Advertisement

An Empirical Study of the Multi-fragment Tour Construction Algorithm for the Travelling Salesman Problem

  • Mehdi El KrariEmail author
  • Belaïd Ahiod
  • Bouazza El Benani
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 552)

Abstract

This paper proposes a detailed study of the Multi-Fragment (MF) tour construction (TC) algorithm for the Travelling Salesman Problem (TSP). This TC heuristic is based on an edge selection strategy which favors edges with the smallest cost under the constraint to have a feasible tour. Extensive computational experiments have been performed on benchmark instances from the literature. The results show that the studied algorithm generally outperforms other constructive heuristics for the TSP.

Keywords

Travelling Salesman Problem Edge selection strategy Tour construction Heuristic 

References

  1. 1.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde: a code for solving traveling salesman problems (1999). http://www.math.uwaterloo.ca/tsp/concorde.html
  2. 2.
    Bentley, J.J.: Fast algorithms for geometric traveling salesman problems. ORSA J. Comput. 4(4), 387–411 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bentley, J.L.: Experiments on traveling salesman heuristics. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 91–99. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1990). http://dl.acm.org/citation.cfm?id=320176.320186
  4. 4.
    Borůvka, O.: O jistém problému minimálním (about a certain minimal problem) (in Czech, German summary) (1926)Google Scholar
  5. 5.
    Bull, J.M., Smith, L.A., Pottage, L., Freeman, R.: Benchmarking java against c and fortran for scientific applications. In: Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java Grande, pp. 97–105. ACM (2001)Google Scholar
  6. 6.
    Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958). http://dx.doi.org/10.1287/opre.6.6.791 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC 1974, pp. 47–63, NY, USA (1974). http://doi.acm.org/10.1145/800119.803884
  8. 8.
    Grefenstette, J., Gopal, R., Rosmaita, B., Van Gucht, D.: Genetic algorithms for the traveling salesman problem. In: Proceedings of the First International Conference on Genetic Algorithms and their Applications, pp. 160–168. Lawrence Erlbaum, New Jersey (1985)Google Scholar
  9. 9.
    Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Johnson, D.S., McGeoch, L.A.: The Traveling Salesman Problem: a case study in local optimization. Local Search Comb. Optim. 1, 215–310 (1997)zbMATHGoogle Scholar
  12. 12.
    Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Variations, pp. 369–443. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Knox, J.: Tabu search performance on the symmetric traveling salesman problem. Comput. Oper. Res. 21(8), 867–876 (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lawler, E.L., Lenstra, J.K., Kan, A.R., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, vol. 3. Wiley, New York (1985)zbMATHGoogle Scholar
  16. 16.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Techn. J. 36(6), 1389–1401 (1957)CrossRefGoogle Scholar
  18. 18.
    Reinelt, G.: TSPLIB–a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991). http://dx.doi.org/10.1287/ijoc.3.4.376 CrossRefzbMATHGoogle Scholar
  19. 19.
    Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  20. 20.
    Reinhelt, G.: \(\{\)TSPLIB\(\}\): a library of sample instances for the TSP (and related problems) from various sources and of various types (2014). http://comopt.ifi.uniheidelberg.de/software/TSPLIB95

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mehdi El Krari
    • 1
    • 2
    Email author
  • Belaïd Ahiod
    • 1
    • 3
  • Bouazza El Benani
    • 1
    • 2
  1. 1.Faculty of ScienceMohammed V University in RabatRabatMorocco
  2. 2.Computer Science LaboratoryMohammed V University in RabatRabatMorocco
  3. 3.LRIT, Associated Unit to CNRST (URAC 29)Mohammed V University in RabatRabatMorocco

Personalised recommendations