WebVectors: A Toolkit for Building Web Interfaces for Vector Semantic Models

  • Andrey Kutuzov
  • Elizaveta KuzmenkoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 661)


The paper presents a free and open source toolkit which aim is to quickly deploy web services handling distributed vector models of semantics. It fills in the gap between training such models (many tools are already available for this) and dissemination of the results to general public. Our toolkit, WebVectors, provides all the necessary routines for organizing online access to querying trained models via modern web interface. We also describe two demo installations of the toolkit, featuring several efficient models for English, Russian and Norwegian.


Distributional semantics Neural embeddings Word2vec Machine learning Visualization 


  1. 1.
    Turney, P.D., Pantel, P., et al.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37(1), 141–188 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26, 3111–3119 (2013)Google Scholar
  3. 3.
    Siencnik, S.K.: Adapting word2vec to named entity recognition. In: Nordic Conference of Computational Linguistics, NODALIDA 2015, p. 239 (2015)Google Scholar
  4. 4.
    Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150. Association for Computational Linguistics (2011)Google Scholar
  5. 5.
    Zou, W.Y., Socher, R., Cer, D.M., Manning, C.D.: Bilingual word embeddings for phrase-based machine translation. In: EMNLP, pp. 1393–1398 (2013)Google Scholar
  6. 6.
    Kutuzov, A., Kuzmenko, E.: Comparing neural lexical models of a classic national corpus and a web corpus: the case for Russian. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9041, pp. 47–58. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-18111-0_4 Google Scholar
  7. 7.
    Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1 (2014)Google Scholar
  8. 8.
    Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, ELRA, pp. 45–50, May 2010Google Scholar
  9. 9.
    Padró, L., Stanilovsky, E.: Freeling 3.0: towards wider multilinguality. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey, European Language Resources Association (ELRA), May 2012Google Scholar
  10. 10.
    Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2579–2605), 85 (2008)zbMATHGoogle Scholar
  11. 11.
    Kutuzov, A., Andreev, I.: Texts in, meaning out: neural language models in semantic similarity task for Russian. In: Proceedings of the Dialog Conference, Moscow, RGGU (2015)Google Scholar
  12. 12.
    Mikolov, T., Le, Q., Sutskever, I.: Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013)
  13. 13.
    Hofland, K.: A self-expanding corpus based on newspapers on the web. In: LREC (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of OsloOsloNorway
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations