Skip to main content

A Thesis on Life, the Universe and Almost Everything

  • Chapter
  • First Online:
  • 954 Accesses

Part of the book series: Astronomers' Universe ((ASTRONOM))

Abstract

Throughout this book we’ve presented life as something of an inevitability. Life began on Earth not because of a series of random, rare events but because there was a high probability that its chemistry would naturally produce systems that we would recognize as living organisms. The chemicals used by life on Earth are ubiquitous in the universe, and thermodynamic entropy demands the growth of self-replicating structures through the release of energy (Chaps. 3 and 4). In this context, can we consider life as an inevitable outcome elsewhere (perhaps everywhere) in the cosmos if the chemistry is appropriate?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Asgard archaebacterium has the same actin-based cytoskeleton as eukaryotes, confirming that modern eukaryotes derived theirs from an archaeal-like ancestor.

  2. 2.

    Possible earlier supercontinents include: Ur (Vaalbara)/Slave/Arctica at 2.5–3.7 billion years ago and Kenorland at 2.4–2.7 billion years ago. Although supercontinents are possible at this time, the area of planet covered by them becomes smaller as we go back in time, and Ur (if it existed) was likely smaller than present-day Asia. Moreover, the location, timing and arrangements of these earlier “super” continents are highly contentious. For example, note the overlapping dates. Two separate supercontinents can’t exist in overlapping time slots.

  3. 3.

    There is more on this in The Exo-Weather Report.

References

  • Relative Likelihood for Life as a Function of Cosmic Time. (2016) Abraham Loeb, Rafael A. Batista, David Sloan. Available at: http://arxiv.org/pdf/1606.08448v2.pdf

  • Decomposition of Hydrogen Sulfide to Produce Hydrogen under Ultraviolet Light. (2008) XU Hong, BAI Xue-Feng. Imaging Science and Photochemistry, 26 (2): 131-137 DOI: 10.7517/j.issn.1674-0475.2008.02.131

    Google Scholar 

  • Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton (2003) Guochun Zhao, Min Sun, Simon A. Wilde and Sanzhong Li; Gondwana Research, V 6, No. 3, pp. 41 7-434. DOI: 10.1016/S1342-937X(05)70996-5; ISSN: 1342-937X

    Google Scholar 

  • Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. 2015 Erik A. Sperling, Charles J.Wolock, Alex S. Morgan, Benjamin C. Gill, Marcus Kunzmann, Galen P. Halverson, Francis A. Macdonald, Andrew H. Knoll & David T. Johnston. N at u r e 523, 4 5 1-454; doi:10.1038/nature14589

    Google Scholar 

  • Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales C.A.Partin a,n, A.Bekker a, N.J.Planavsky b, C.T.Scott c, B.C.Gill d, C.Li e, V.Podkovyrov f, A.Maslov g, K.O.Konhauser h, S.V.Lalonde i, G.D.Love j, S.W.Poulton k, T.W.Lyons Earth and Planetary Science Letters 369-370 (2013) 284–293

    Google Scholar 

  • What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent. (2012) Joseph G. Meert Gondwana Research 21, 987–993, doi:10.1016/j.gr.2011.12.002

    Google Scholar 

  • Rodinia supercontinent ref The making and unmaking of a supercontinent: Rodinia revisited (2003) Joseph G. Meert, Trond H. Tectonophysics375 (2003) 261 – 288, doi:10.1016/S0040-1951(03)00342-: available at: Torsvikhttp://wayback.archive.org/web/20110723122559/http://www.geodynamics.no/guest/RodiniaRevisitedMeert_Torevik.pdf

    Google Scholar 

  • Supercontinents: a retrospective essay (2014) Available on Researchgate at: https://www.researchgate.net/publication/235834618_The_Supercontinent_Cycle_A_Retrospective_Essay DOI: 10.1016/j.gr.2012.12.026

  • Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth. (2012) Birger Rasmussen, Ian R. Fletcher, Andrey Bekker, Janet R. Muhling, Courtney J. Gregory & Alan M. Thorne. Nature, 484, 498-501; doi:10.1038/nature11021

    Google Scholar 

  • Shannon, Claude E. (July 1948). "A Mathematical Theory of Communication" . Bell System Technical Journal. 27 (3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x . Available at: http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%20Theory%20of%20Communication.pdf

  • Shannon, Claude E. (October 1948). "A Mathematical Theory of Communication". Bell System Technical Journal. 27 (4): 623–666. doi: 10.1002/j.1538-7305.1948.tb00917.x .

  • Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. (2008) Zachary D. Blount, Christina Z. Borland, and Richard E. Lenski; PNAS 105 ( 23) 7899–7906.

    Google Scholar 

  • Koonin, E.V. 2010, The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology 2010, 11:209 http://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-5-209

  • Hochner B, Shomrat T, Fiorito G (2006) The Octopus: A Model for a Comparative Analysis of the Evolution of Learning and Memory Mechanisms . Biol. Bull. 210: 308-317.

  • On the decrease in entropy in a thermodynamic system by the intervention of intelligent beings. (1929) Leó Szilárd. Available at: http://www.sns.ias.edu/~tlusty/courses/InfoInBio/Papers/Szilard1929.pdf

  • The Major Transitions in Evolution. Eors Szathmary and John Maynard Smith. Nature, 374:227–232, March16 1995.

    Google Scholar 

  • The Major Transitions in Evolution Revisited. Brett Calcott and Kim Sterelny, 2011, Massachusetts Institute of Technology, ISBN 978-0-262-01524-0

    Google Scholar 

  • Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. (2001) Carol D. von Dohlen, Shawn Kohler, Skylar T. Alsop & William R. McManus Nature, 412,433-436

    Google Scholar 

  • Yockey, Hubert P. Information theory, evolution, and the origin of life I Huberr P. Yockey. (2005) Cambriddge University Press ISBN 0·521·80293-8

    Google Scholar 

  • How can evolution learn? Richard Watson and Eörs Szathmary 2016 Trends in Ecology & Evolution, 31, (2 ) 147-157, http://dx.doi.org/10.1016/j.tree.2015.11.009

  • Must Early Life Be Easy? The Rhythm of Major Evolutionary Transitions1998, Robin Hanson, doi: 10.1.1.71.783; available at: http://mason.gmu.edu/~rhanson/hardstep.pdf

  • Glen David Brin. The ‘great silence’: The controversy concerning extraterrestrial intelligent life. Quarterly Journal of the Royal Astronomical Society, 24:283–309, 1983.

    Google Scholar 

  • Life might be rare despite its early emergence on Earth: a Bayesian analysis of the probability of abiogenesis (2011) David S. Spiegel and Edwin L. Turner. PNAS doi/10.1073/pnas.0709640104: Available at: https://arxiv.org/pdf/1107.3835v1.pdf

    Google Scholar 

  • Brandon Carter. The anthropic selection principle and the ultra-darwinian synthesis. In F. Bertola and U. Curi, editors, The Anthropic Principle, pages 33–63. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  • J. William Schopf. The oldest fossils and what they mean. In Major Events in the History of Life [15], pages 29–63. Princeton University Press 1999; ISBN 0867202688 9780867202687

    Google Scholar 

  • J. William Schopf. Disparate rates, differing fates: Tempo and mode of evolution changed from the precambrian to the phanerozoic. In Walter M. Fitch and Francisco J. Ayala, editors, Tempo and Mode in Evolution, Genetics and Paleontology 50 Years After Simpson, pages 41–61. National Academy Press, Washington D.C., 1995.

    Google Scholar 

  • Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Bettina E. Schirrmeistera, Jurriaan M. de Vosb, Alexandre Antonellic, and Homayoun C. Bagheria. PNAS, 2013, 110 (5) 1791–1796

    Google Scholar 

  • Lenton TM, Boyle, RA, Poulton, SW, Shields-Zhou, GA, Butterfield NJ (2014) Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7 (4) 257-265 ISSN 1752-0894

    Google Scholar 

  • A molecular timescale of eukaryote evolution and the rise of complex multicellular life. 2004, S Blair Hedges, Jaime E Blair, Maria L Venturi and Jason L Shoe. BMC Evolutionary Biology, 4, 1-9; Available at: http://www.biomedcentral.com/1471-2148/4/2

  • The Multiple Origins of Complex Multicellularity (2011) Andrew H. Knoll Annu. Rev. Earth Planet. Sci. 2011.39:217-239. Downloaded from www.annualreviews.org by Harvard University on 04/28/11. For personal use only.

  • Shannon, Claude E. (July 1948). "A Mathematical Theory of Communication" . Bell System Technical Journal. 27 (3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x . Available at: http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%20Theory%20of%20Communication.pdf

  • Shannon, Claude E. (October 1948). "A Mathematical Theory of Communication". Bell System Technical Journal. 27 (4): 623–666. doi: 10.1002/j.1538-7305.1948.tb00917.x .

  • Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. (2008) Zachary D. Blount, Christina Z. Borland, and Richard E. Lenski; PNAS 105 ( 23) 7899–7906.

    Google Scholar 

  • Improved use of a public good selects for the evolution of undifferentiated multicellularity (2013) John H Koschwanez, Kevin R Foster, Andrew W Murray; eLife 2013;2:e00367. DOI: 10.7554/eLife.00367

    Google Scholar 

  • Formation and composition of planets around very low mass stars (2016) Y. Alibert & W. Benz. Astronomy and Astrophysics in press. Available at: www.arXiv:1610.03460v1

    Google Scholar 

  • The Atlantic salmon genome provides insights into rediploidization (2016) Sigbjørn Lien, Ben F. Koop, Simen R. Sandve, Jason R. Miller, Matthew P. Kent, Torfinn Nome, Torgeir R. Hvidsten, Jong S. Leong, David R. Minkley, Aleksey Zimin, Fabian Grammes, Harald Grove, Arne Gjuvsland, Brian Walenz. Russell A. Hermansen, Kris von Schalburg, Eric B. Rondeau, Alex Di Genova, Jeevan K. A. Samy, Jon Olav Vik, Magnus D. Vigeland, Lis Caler, Unni Grimholt, Sissel Jentoft, Dag Inge Våge, Pieter de Jong, Thomas Moen,Matthew Baranski, Yniv Palti, Douglas R. Smith, James A. Yorke, Alexander J. Nederbragt, Ave Tooming-Klunderud, Kjetill S. Jakobsen, Xuanting Jiang, Dingding Fan, Yan Hu, David A. Liberles, Rodrigo Vidal, Patricia Iturra, Steven J. M. Jones, Inge Jonassen, Alejandro Maass, Stig W. Omholt & William S. Davidson. Nature 533, 200-207, doi:10.1038/nature17164

    Google Scholar 

  • Niche filling slows the diversification of Himalayan songbirds. (2014)Trevor D. Price, Daniel M.Hooper, Caitlyn D. Buchanan, Ulf S. Johansson, D. Thomas Tietze, Per Alström, Urban Olsson, Mousumi Ghosh-Harihar, Farah Ishtiaq, Sandeep K. Gupta, Jochen Martens, Bettina Harr, Pratap Singh & Dhananjai Mohan. Nature, 509, 222-225; doi:10.1038/nature13272

    Google Scholar 

  • Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. (2013) Daniel L. Rabosky and Daniel R. Matute PNAS, 110 (38), 15354–15359; available at: www.pnas.org/cgi/doi/10.1073/pnas.1305529110

  • Hochner B, Shomrat T, Fiorito G (2006) The Octopus: A Model for a Comparative Analysis of the Evolution of Learning and Memory Mechanisms . Biol. Bull. 210: 308-317.

  • Sergey V. Buldyrev, Roni Parshani, Gerald Paul, H. Eugene Stanley & Shlomo Havlin. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025-1028

    Google Scholar 

  • On the decrease in entropy in a thermodynamic system by the intervention of intelligent beings. (1929) Leó Szilárd. Available at: http://www.sns.ias.edu/~tlusty/courses/InfoInBio/Papers/Szilard1929.pdf

  • An actin-based cytoskeleton in archaea. (2011) Ettema TJ, Lindås AC, Bernander R, Molecular Microbiology; 80(4):1052–61. doi: 10.1111/j.1365-2958.2011.07635.x. Epub 2011 Apr 6.

  • Asgard archaea illuminate the origin of eukaryotic cellular complexity. (2017) Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJ. Nature, 541 (7637), 353–358. doi: 10.1038/nature21031. Epub 2017

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stevenson, D.S. (2017). A Thesis on Life, the Universe and Almost Everything. In: The Nature of Life and Its Potential to Survive. Astronomers' Universe. Springer, Cham. https://doi.org/10.1007/978-3-319-52911-0_9

Download citation

Publish with us

Policies and ethics