Cultigen Chenopods in the Americas: A Hemispherical Perspective

  • Gayle J. Fritz
  • Maria C. Bruno
  • BrieAnna S. Langlie
  • Bruce D. Smith
  • Logan Kistler
Chapter

Abstract

In this chapter, we summarize recent contributions made by archaeologists and researchers in other disciplines toward understanding the many factors involved in the domestication of Chenopodium berlandieri in North America and Chenopodium quinoa in South America. We focus on studies of seed morphology and molecular genetics, which have aided in clarifying the trajectories of domestication for both species. The comparison of these trajectories allows us to examine the similarities and differences in the evolutionary, economic, social, and political processes that contributed not only to their domestication but the roles they played in the later agricultural and sociopolitical systems in their respective regions. The eastern North American cultigen chenopod eventually lost its role as a key component of pre-Columbian agricultural systems, whereas quinoa flourished in the Andes and has attained global super-food status today. Still, both of these crops constituted food that was central to and inseparable from considerations of identity, status, ritual, exchange, and sociopolitical life. An appreciation of chenopods as important foods in each region allows us to reflect upon their diverse evolutionary pathways and the significance of individual foods and broader cuisines within regional histories.

Keywords

Chenopodium Quinoa Plant domestication Eastern North American archaeology Andean archaeology Ancient grains Super foods 

References

  1. Albarracín-Jordan, J. (1992). Prehispanic and early colonial settlement patterns in the lower Tiwanaku valley, Bolivia. Ph.D. Dissertation. Dallas: Department of Anthropology, Southern Methodist University.Google Scholar
  2. Aldenderfer, M. S. (1989). Archaic period in the South Central Andes. Journal of World Prehistory, 3(2), 117–158.CrossRefGoogle Scholar
  3. Arkush, E. N. (2008). War, causality, and chronology in the Titicaca Basin. Latin American Antiquity, 19(4), 339–373.CrossRefGoogle Scholar
  4. Arkush, E. N. (2011). Hillforts of the ancient Andes: Colla warfare, society, and landscape. Gainesville: University Press of Florida.CrossRefGoogle Scholar
  5. Balzotti, M. R. B., Thornton, J. N., Maughan, P. J., McClellan, D. A., Stevens, M. R., Jellen, E. N., et al. (2008). Expression and evolutionary relationships of the Chenopodium quinoa 11S seed storage protein gene. International Journal of Plant Sciences, 169, 281–291.CrossRefGoogle Scholar
  6. Bandy, M. S. (2001). Population and history in the ancient Titicaca Basin. Ph. D. Dissertation. Berkeley: Department of Anthropology, University of California.Google Scholar
  7. Bandy, M. S. (2004). Fissioning, scalar stress, and social evolution in early village societies. American Anthropologist, 106(2), 322–333.CrossRefGoogle Scholar
  8. Bauer, B. S. (2004). Ancient Cuzco: heartland of the Inca. Austin: University of Texas Press.Google Scholar
  9. Bauer, B. S., & Stanish, C. (2001). Ritual and pilgrimage in the ancient Andes: the Islands of the Sun and the Moon. Austin: University of Texas Press.Google Scholar
  10. Berryman, C. A. (2010). Food, feasts, and the construction of identity and power in ancient Tiwanaku: a bioarchaeological perspective. Ph. D. Dissertation. Nashville, TN: Department of Anthropology, Vanderbilt University.Google Scholar
  11. Betanzos, J. (1996). Narrative of the Incas: from the Palma de Mallorca Manuscript, 1557 (trans: Hamilton, R., & Buchanan, D.). Austin: University of Texas Press.Google Scholar
  12. Bhargava, A., Shukla, S., & Ohri, D. (2006). Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genetic Resources and Crop Evolution, 53, 1309–1320.CrossRefGoogle Scholar
  13. Bhargava, A., Shukla, S., & Ohri, D. (2007). Genome size variation in some cultivated and wild species of Chenopodium (Chenopodiaceae). Caryologia, 60, 245–250.CrossRefGoogle Scholar
  14. Browman, D. L. (1980). Tiwanaku expansion and altiplano economic patterns. Estudios Arqueologicos, 5, 107–120.Google Scholar
  15. Bruno, M. C. (2001). Formative Agriculture? The status of Chenopodium domestication and intensification at Chiripa, Bolivia (1500 B.C.–A.D.100). Master’s Thesis. St. Louis, MO: Department of Anthropology, Washington University.Google Scholar
  16. Bruno, M. C. (2006). A morphological approach to documenting the domestication of Chenopodium in the Andes. In M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.), Documenting domestication: new genetic and archaeological paradigms (pp. 32–45). Berkeley: University of California Press.Google Scholar
  17. Bruno, M. C. (2008). Waranq Waranqa: Ethnobotanial Perspectives on agricultural intensification in the Lake Titicaca Basin (Taraco Peninsula, Bolivia). Ph.D. Dissertation. St. Louis: Department of Anthropology, Washington University.Google Scholar
  18. Bruno, M. C., Rojas, W., & Pinto, M. (2013). Morfología de semillas de cañahua (Chenopodium pallidicaule Aellen) silvestres y domesticadas: hacia un mejor entendimiento de los procesos de domesticación. Ibarra, Ecuador: Paper presented at the IV Congreso Mundial de Quinua.Google Scholar
  19. Bruno, M. C., & Whitehead, W. T. (2003). Chenopodium cultivation and formative period agriculture at Chiripa, Bolivia. Latin American Antiquity, 14, 339–355.CrossRefGoogle Scholar
  20. Burger, R. L., Mohr-Chávez, K. L., & Chávez, S. J. (2000). Through the glass darkly: prehispanic obsidian procurement and exchange in southern Peru and northern Bolivia. Journal of World Prehistory, 14, 267–362.CrossRefGoogle Scholar
  21. Capriles Flores, J. M. (2014). The economic organization of early camelid pastoralism in the Andean highlands of Bolivia. Oxford: British Archaeological Reports.Google Scholar
  22. Christensen, S. A., Pratt, D. B., Pratt, C., Nelson, P. T., Stevens, M. R., Jellen, E. N., et al. (2007). Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genetic Resources: Characterization and Utilization, 5, 82–95.CrossRefGoogle Scholar
  23. Cobo, B. (1945). Historia del nuevo mundo, Biblioteca de autores españoles. Madrid: Editorial Atlas.Google Scholar
  24. Cobo, B. (1979). History of the Inca Empire (trans: Hamilton, R.). Austin: University of Texas Press.Google Scholar
  25. Costa Tártara, S. M., Manifesto, M. M., Bramardi, S. J., & Bertero, H. D. (2012). Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conservation Genetics, 13, 1027–1038.CrossRefGoogle Scholar
  26. Crothers, G. M. (2012). Early Woodland ritual use of caves in eastern North America. American Antiquity, 77, 524–541.CrossRefGoogle Scholar
  27. D’Altroy, T. N., & Hastorf, C. A. (1984). The distribution and contents of Inca state storehouses in the Xauxa region of Peru. American Antiquity, 49, 334–349.CrossRefGoogle Scholar
  28. D’Altroy, T. N., & Hastorf, C. A. (1992). The architecture and contents of Inka State storehouses in the Xauxa Region of Peru. In T. Y. LeVine (Ed.), Inka storage systems (pp. 259–286). Norman: University of Oklahoma Press.Google Scholar
  29. del Castillo, C., Winkel, T., Mahy, G., & Bizoux, J. (2007). Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genetic Resources and Crop Evolution, 54, 897–905.CrossRefGoogle Scholar
  30. Delcourt, P. A., & Delcourt, H. R. (2004). Prehistoric native Americans and ecological change: human ecosystems in eastern North America since the Pleistocene. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. DeWet, J. M. J., & Harlan, J. (1975). Weeds and domesticates: evolution in the man-made habitat. Economic Botany, 29, 99–107.CrossRefGoogle Scholar
  32. Earle, T. K. (1992). Storage and the Inka imperial economy: archaeological research. In T. Y. LeVine (Ed.), Inka Storage Systems (pp. 327–342). Norman: University of Oklahoma Press.Google Scholar
  33. Edging, R. (2007). The vacant quarter hypothesis: a survivor’s story. Missouri Archaeologist, 68, 59–93.Google Scholar
  34. Eisentraut, P. J. (1998). Macrobotanical remains from southern Peru: a comparison of Late Archaic-early formative period sites from the Puna and Suni zones of the Western Titicaca Basin. Ph. D. Dissertation. Santa Barbara, CA: Department of Anthropology, University of California.Google Scholar
  35. Fritz, G. J. (1984). Identification of cultigen amaranth and chenopod from rockshelter sites in Northwest Arkansas. American Antiquity, 49, 558–572.CrossRefGoogle Scholar
  36. Fritz, G. J. (1986). Prehistoric Ozark agriculture: the University of Arkansas rockshelter collections. Ph. D. Dissertation. Chapel Hill, NC: Department of Anthropology, University of North Carolina at Chapel Hill.Google Scholar
  37. Fritz, G. J. (1993). Early and Middle Woodland period paleoethnobotany. In C. M. Scarry (Ed.), Foraging and farming in the eastern Woodlands (pp. 39–56). Gainesville: University Press of Florida.Google Scholar
  38. Fritz, G. J. (2000). Food and ceremonial plants from Sub-Mound 51 at Cahokia. Report submitted to Timothy Pauketat, P.I. of NSF-Sponsored Early Cahokia Project. Ms. on file at Washington University in St. Louis, Paleoethnobotanical Laboratory.Google Scholar
  39. Fritz, G. J., & Smith, B. D. (1988). Old collections and new technology: documenting the domestication of Chenopodium in eastern North America. Midcontinental Journal of Archaeology, 13, 3–27.Google Scholar
  40. Fuentes, F. F., Martinez, E. A., Hinrichsen, P. V., Jellen, E. N., & Maughn, P. J. (2009). Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics, 10, 369–377.CrossRefGoogle Scholar
  41. Fuentes, F. F., & Zurita-Silva, A. (2013). Molecular studies. In A. Bhargava & S. Srivastava (Eds.), Quinoa: Botany, production and uses (pp. 168–184). Boston: CABI.CrossRefGoogle Scholar
  42. Gardner, P. S. (1987). New evidence concerning the chronology and paleoethnobotany of Salts Cave, Kentucky. American Antiquity, 52, 358–366.CrossRefGoogle Scholar
  43. Gilmore, M. R. (1931). Vegetal remains of the Ozark Bluff-Dweller culture. Papers of the Michigan Academy of Science, Arts, and Letters, 14, 38–102.Google Scholar
  44. Goldstein, P. S. (2003). From stew-eaters to maize-drinkers, the chicha economy and the Tiwanaku expansion. In T. L. Bray (Ed.), The archaeology and politics of food and feasting in early states and empires (pp. 143–172). New York: Springer.Google Scholar
  45. Gordon, A. G. (2006). Domesticated Chenopodium in North America: comparing the past and the present. Ph. D. Dissertation. St. Louis, MO: Department of Anthropology, Washington University.Google Scholar
  46. Gremillion, K. J. (1993). The evolution of seed morphology in domesticated Chenopodium: an archaeological case study. Journal of Ethnobiology, 13, 149–169.Google Scholar
  47. Gremillion, K. J. (2014). Goosefoot (Chenopodium). In P. E. Minnis (Ed.), New lives for ancient and extinct crops (pp. 44–64). Tucson: University of Arizona Press.Google Scholar
  48. Hastorf, C. A. (2003). Community with the ancestors: ceremonies and social memory in the middle formative at Chiripa, Bolivia. Journal of Anthropological Archaeology, 22, 305–332.CrossRefGoogle Scholar
  49. Hastorf, C. A. (2006). Domesticated food and society in early coastal Peru. In W. Balée & C. L. Erickson (Eds.), Time and complexity in historical ccology: studies in the Neotropical lowlands (pp. 87–126). New York: Columbia University Press.Google Scholar
  50. Hastorf, C. A., Whitehead, W. T., Bruno, M. C., & Wright, M. (2006). The movements of maize into middle horizon Tiwanakau, Bolivia. In R. Tykot, J. Staller, & B. Benz (Eds.), Histories of Maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of Maize (pp. 429–448). Oxford: Academic Press.Google Scholar
  51. Hunziker, A. (1952). Los pseudocereales de la agricultura indígena de América. Buenos Aires: Acme Agency.Google Scholar
  52. Janusek, J. W. (2008). Ancient Tiwanaku. Cambridge: Cambridge University Press.Google Scholar
  53. Janusek, J. W., & Kolata, A. L. (2004). Top-down or bottom-up: rural settlement and raised field agriculture in the Lake Titicaca Basin, Bolivia. Journal of Anthropological Archaeology, 23, 404–430.CrossRefGoogle Scholar
  54. Jarvis, D. E., Kopp, O. R., Jellen, E. N., Mallory, M. A., Pattee, J., Bonifacio, A., et al. (2008). Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). Journal of Genetics, 87, 39–51.CrossRefGoogle Scholar
  55. Jefferies, R. W. (1996). The emergence of long distance trade networks in the Southeastern United States. In K. Sassaman & D. Anderson (Eds.), Archaeology of the mid-Holocene Southeast (pp. 222–234). Gainesville: University Press of Florida.Google Scholar
  56. Johannessen, S. (1993). Farmers of the Late Woodland. In C. M. Scarry (Ed.), Foraging and farming in the eastern Woodlands (pp. 57–77). Gainesville: University Press of Florida.Google Scholar
  57. Kistler, L., & Shapiro, B. (2011). Ancient DNA confirms a local origin of domesticated chenopod in eastern North America. Journal of Archaeological Science, 38, 3549–3554.CrossRefGoogle Scholar
  58. Kolata, A. L. (1986). The agricultural foundations of the Tiwanaku State: a view from the Heartland. American Antiquity, 51(4), 748–762.CrossRefGoogle Scholar
  59. Kolata, A. L. (1991). The technology and organization of agricultural production in the Tiwanaku state. Latin American Antiquity, 2(2), 99–125.CrossRefGoogle Scholar
  60. Kolata, A. L. (1993). The Tiwanaku: portait of an Andean civilization. Oxford: Blackwell Press.Google Scholar
  61. Kuznar, L. A. (1993). Mutualism between Chenopodium, herd animals, and herders in the south central Andes. Mountain Research and Development, 13, 257–265.CrossRefGoogle Scholar
  62. Langlie, B. S. (2011). A paleoethnobotanical analysis of three formative period Wankarani sites located in the department of Oruro, Bolivia. M.A. Thesis. St. Louis, MO: Department of Anthropology, Washington University.Google Scholar
  63. Langlie, B. S., & Arkush, E. N. (2016). Managing mayhem: conflict, environment, and subsistence in the Andean Late Intermediate Period, Puno, Peru. In A. VanDerwarker & G. Wilson (Eds.), The archaeology of food and warfare: food insecurity in prehistory (pp. 259–290). New York: Springer.CrossRefGoogle Scholar
  64. Langlie, B. S., Hastorf, C. A., Bruno, M. C., Bermann, M., Bonzani, R. M., & Castellón Condarco, W. (2011). Diversity in Andean Chenopodium domestication: describing a new morphological type from La Barca, Bolivia 1300-1250 BC. Journal of Ethnobiology, 31, 72–88.CrossRefGoogle Scholar
  65. LeVine, T. Y. (1992). Inka storage systems. Norman: University of Oklahoma Press.Google Scholar
  66. López, M. L., Bruno, M. C., & Planella, M. T. (2015). El género Chenopodium: metodología aplicada a la identificación taxonómica en ejemplares arqueológicos. Presentación de Casos de Estudio de La Región Sur-Andina. In C. Belmar, & V. Lema (Eds.), Avances y desafios metodológicos en arqueobotánica: miradas consensuadas y diálogos compartidos desde Sudamérica (pp. 89–192, Monografías arqueológicas, Facultada Patrimonio, Cultura, y Educación). Chile: Universidad SEK.Google Scholar
  67. López, M. L., & Nielsen, A. E. (2012). Macrorrestos de Chenopodium quinoa Willd. en la plaza de Laqaya (Nor Lípez, Potosí, Bolivia). Revista Intersecciones en Antropología, 14, 295–300.Google Scholar
  68. Lopinot, N. H. (1997). Cahokian food production reconsidered. In T. R. Pauketat & T. E. Emerson (Eds.), Cahokia: domination and ideology in the Mississippian world (pp. 52–68). Lincoln: University of Nebraska Press.Google Scholar
  69. Maughan, P. J., Bonifacio, A., Jellen, E. N., Stevens, M., Coleman, C. E., Ricks, M., et al. (2004). A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theoretical and Applied Genetics, 109, 1188–1195.CrossRefGoogle Scholar
  70. Maughan, P. J., Kolano, B. A., Maluszynska, J., Coles, N. D., Bonifacio, A., Rojas, J., et al. (2006). Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome, 49, 825–839.CrossRefGoogle Scholar
  71. Maughan, P. J., Smith, S. M., Rojas-Beltrán, J. A., Elzinga, D., Raney, J. A., Jellen, E. N., et al. (2012). Single nucleotide polymorphisms identification, characterization and linkage mapping in Chenopodium quinoa. The Plant Genome, 5, 1–7.CrossRefGoogle Scholar
  72. Maughan, P. J., Turner, T. B., Coleman, C. E., Elzinga, D. B., Jellen, E. N., Morales, J. A., et al. (2009). Characterization of salt overly sensitive (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd). Genome, 52, 647–657.CrossRefGoogle Scholar
  73. McClung de Tapia, E., & Rios-Fuentes, J. (2006). Chenopodium spp.: on the road to domestication in the pre-hispanic Basin of Mexico. Paper presented at the 71st Annual Meeting of the Society for American Archaeology, Puerto Rico, 26 April.Google Scholar
  74. Mengoni Goñalons, G. L., & Yacobaccio, H. D. (2006). The domestication of South American camelids: a view from the South-Central Andes. In M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.), Documenting domestication: new genetic and archaeological paradigms (pp. 228–244). Berkeley: University of California Press.Google Scholar
  75. Morris, C. E. (1976). The archaeological study of Andean exchange systems. In C. L. Redman, M. J. Berman, E. V. Curtin, W. T. Langhorne Jr., N. M. Versaggi, & J. C. Wanser (Eds.), Social archaeology: beyond subsistence and dating (pp. 315–337). New York: Academic Press.Google Scholar
  76. Mt. Pleasant, J. (2006). The science behind the Three Sisters mound systems: an agronomic assessment of an indigeous agricultural system in the Northeast. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of Maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of Maize (pp. 529–538). New York: Academic Press.Google Scholar
  77. National Research Council. (1989). Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation (Report of an ad hoc panel of the Advisory Committee on Technology Innovation Board on Science and Technology for International Development). Washington, D.C.: National Academy Press.Google Scholar
  78. Nordstrom, C. (1990). Evidence for the domestication of Chenopodium in the Andes (Report to the National Science Foundation, Paleoethnobotany Laboratory Reports #19). Berkeley: University of California.Google Scholar
  79. Palomino, G., Hernández, L. T., & Torres, E. (2008). Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttalliae. Euphytica, 164, 221–230.CrossRefGoogle Scholar
  80. Pauketat, T. R., Kelly, L. S., Fritz, G. J., Lopinot, N. H. E. S., & Hargrave, E. (2002). The residues of feasting and public ritual at early Cahokia. American Antiquity, 67, 257–279.CrossRefGoogle Scholar
  81. Pearsall, D. (1992). The origins of plant cultivation in South America. In C. W. Cowan & P. J. Watson (Eds.), The origins of agriculture (pp. 173–205). Washington, D.C.: Smithsonian Institution Press.Google Scholar
  82. Planella, M. T., Lopez, M. L., & Bruno, M. C. (2014). La Domesticación y Distribución Prehistórica. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the art report of Quinoa in the world in 2013: FAO (Santiago de Chile) y CIRAD. Montpellier: France.Google Scholar
  83. Planella, M. T., McRostie, V., & Falabella, F. (2010). El aporte arqueobotánico al conocimiento de los recursos vegetales en la población alfarera temprana del sitio El Mercurio. Actas del XVII Congreso Nacional de Arqueología Chilena, pp. 1255–1265.Google Scholar
  84. Planella, M. T., Scherson, R., & McRostie, V. (2011). Sitio El Plomo y nuevos registros de cultígenos iniciales en cazadores del Arcaico IV en Alto Maipo, Chile Central. Chungará, 43(2), 189–202.CrossRefGoogle Scholar
  85. Popenoe, H., King, S. R., León, J. R., & Kalinowski, L. S. (1989). Lost crops of the Incas: Little-known plants of the Andes with promise for worldwide cultivation. Washington, D.C.: National Academy Press. Google Scholar
  86. Raney, J. A., Reynolds, D. J., Elzinga, D. B., Page, J., Udall, J. A., Jellen, E. N., et al. (2014). Transcriptome analysis of drought induced stress in Chenopodium quinoa. American Journal of Plant Sciences, 5, 338–357.CrossRefGoogle Scholar
  87. Reynolds, D. J. (2009). Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. M.Sc. Thesis. Provo, UT: Brigham Young University.Google Scholar
  88. Rieseberg, L. H., & Harter, A. V. (2006). Molecular evidence and the evolutionary history of the domesticated sunflowers. In T. Motley (Ed.), Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops: a broad taxonomic and geographic survey (pp. 31–48). New York: Columbia University Press.Google Scholar
  89. Rigsby, C. A., Baker, P. A., & Aldenderfer, M. S. (2003). Fluvial history of the Rio Ilave valley, Peru, and its relationship to climate and human history. Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 165–185.CrossRefGoogle Scholar
  90. Roberts, K. M. (1996). Intimations of early Mississippian political, domestic, and ecological environments at Cahokia: an analysis of plant remains from Sub-Mound 51. M.A. Thesis. St. Louis, MO: Department of Anthropology, Washington University.Google Scholar
  91. Rose, C. E. (2001). Household and community organization of a Formative Period, Bolivian settlement. Ph. D. Dissertation. Pittsburgh, PA: Department of Anthropology, University of Pittsburgh.Google Scholar
  92. Rowe, J. H. (1945). Absolute chronology in the Andean area. American Antiquity, 10, 265–284.CrossRefGoogle Scholar
  93. Simon, M. L. (2000). Regional variations in plant use strategies in the Midwest during the Late Woodland. In T. E. Emerson, D. L. McElrath, & A. C. Fortier (Eds.), Late Woodland societies: tradition and transformation across the midcontinent (pp. 37–75). Lincoln: University of Nebraska Press.Google Scholar
  94. Simon, M. L., & Parker, K. E. (2006). Prehistoric plant use in the American Bottom: new thoughts and interpretations. Southeastern Archaeology, 25, 212–257.Google Scholar
  95. Smith, B. D. (1985a). Chenopodium berlandieri ssp. jonesianum: evidence for a Hopewellian domesticate from Ash Cave, Ohio. Southeastern Archaeology, 4, 107–133.Google Scholar
  96. Smith, B. D. (1985b). The role of Chenopodium as a domesticate in the pre-maize garden systems of the eastern United States. Southeastern Archaeology, 4, 51–72.Google Scholar
  97. Smith, B. D. (1992a). Hopewellian farmers of eastern North America. In B. D. Smith (Ed.), Rivers of change: essays on early agriculture in eastern North America (pp. 201–248). Washington, D.C.: Smithsonian Institution Press.Google Scholar
  98. Smith, B. D. (1992b). In search of Choupihoul, the mystery grain of the Natchez. In B. D. Smith (Ed.), Rivers of change: essays on early agriculture in eastern North America (pp. 239–264). Washington, D.C.: Smithsonian Institution Press.Google Scholar
  99. Smith, B. D. (2006a). Eastern North America as an independent center of plant domestication. Proceedings of the National Academy of Sciences, 103, 12223–12228.CrossRefGoogle Scholar
  100. Smith, B. D. (2006b). Household, community, and subsistence in Hopewell research. In D. K. Charles & J. E. Buikstra (Eds.), Recreating Hopewell (pp. 491–509). Gainesville: University Press of Florida.Google Scholar
  101. Smith, B. D. (2011). The cultural context of plant domestication in eastern North America. Current Anthropology, 52(Supplement 4), S471–S484.CrossRefGoogle Scholar
  102. Smith, B. D. (2014). The domestication of Helianthus annuus L. (sunflower). Vegetation History and Archaeobotany, 23, 57–74.CrossRefGoogle Scholar
  103. Smith, B. D., & Yarnell, R. A. (2009). Initial formation of an indigenous crop complex in eastern North America at 3800 B.P. Proceedings of the National Academy of Sciences, 106, 6561–6566.CrossRefGoogle Scholar
  104. Spooner, D. M., McLean, K., Ramsay, G., Waugh, R., & Bryan, G. J. (2005). A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences, 102, 14694–14699.CrossRefGoogle Scholar
  105. Stanish, C. (1994). The hydraulic hypothesis revisited: Lake Titicaca basin raised fields in theoretical perspective. Latin American Antiquity, 5, 312–332.CrossRefGoogle Scholar
  106. Tapia, M. E. (2015). The long journey of Quinoa: who wrote its history? In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the art report of Quinoa in the world in 2013 (pp. 3–9). Montpellier, France: FAO (Santiago de Chile) y CIRAD.Google Scholar
  107. Towle, M. A. (1961). The ethnobotany of pre-Columbian Peru (Viking Publications in Anthropology 30). Chicago: Aldine.Google Scholar
  108. Wahl, H. A. (1952). A preliminary study of the genus Chenopodium in North America. Bartonia, 27, 1–46.Google Scholar
  109. Walsh, B., & Emshwiller, E. (2011). Phylogeny of American Chenopodium species with focus on origins of the domesticated taxa. St. Louis: Paper presented at the Annual Meeting of the Botanical Society of America.Google Scholar
  110. Wilson, H. D. (1981). Domesticated Chenopodium of the Ozark Bluff Dwellers. Economic Botany, 35, 233–239.CrossRefGoogle Scholar
  111. Wilson, H. D. (1988). Quinua biosystematics I: domesticated populations. Economic Botany, 42, 461–477.CrossRefGoogle Scholar
  112. Wilson, H. D. (1990). Quinua and relatives (Chenopodium subsect. Cellulata). Economic Botany, 44(suppl), 92–110.CrossRefGoogle Scholar
  113. Wilson, H. D., & Heiser, C. B., Jr. (1979). The origin and evolutionary relationships of “Huauzontle” (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. American Journal of Botany, 66, 198–206.CrossRefGoogle Scholar
  114. Wright, M. F., Hastorf, C. A., & Lennstrom, H. A. (2003). Pre-Hispanic agriculture and plant use at Tiwanaku: social and political implications. In A. Kolata (Ed.), Tiwanaku and its hinterland: archaeological and paleoecological investigations of an Andean civilization (Vol. 2, pp. 384–403). Urban and Rural Archaeology. Washington, D.C.: Smithsonian Institution Press.Google Scholar
  115. Yarnell, R. A. (1974). Plant food and cultivation of the Salts Cavers. In P. J. Watson (Ed.), Archaeology of the Mammoth Cave Area (pp. 113–122). New York: Academic Press.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gayle J. Fritz
    • 1
  • Maria C. Bruno
    • 2
  • BrieAnna S. Langlie
    • 3
  • Bruce D. Smith
    • 4
  • Logan Kistler
    • 5
  1. 1.Department of AnthropologyWashington UniversitySt. LouisUSA
  2. 2.Department of Anthropology and ArchaeologyDickinson CollegeCarlisleUSA
  3. 3.Department of AnthropologyLoyola University ChicagoChicagoUSA
  4. 4.Program in Human Ecology and Archaeobiology and Department of Anthropology, National Museum of Natural HistorySmithsonian InstitutionWashington, D.C.USA
  5. 5.Department of AnthropologyNational Museum of Natural History, Smithsonian InstitutionWashington, D.C.USA

Personalised recommendations