Skip to main content

A Good-λ Lemma, Two Weight T1 Theorems Without Weak Boundedness, and a Two Weight Accretive Global Tb Theorem

  • Chapter
  • First Online:
Harmonic Analysis, Partial Differential Equations and Applications

Abstract

Let σ and ω be locally finite positive Borel measures on \(\mathbb{R}^{n}\), let T α be a standard α-fractional Calderón-Zygmund operator on \(\mathbb{R}^{n}\) with 0 ≤ α < n, and assume as side conditions the \(\mathcal{A}_{2}^{\alpha }\) conditions, punctured A 2 α conditions, and certain α -energy conditions. Then the weak boundedness property associated with the operator T α and the weight pair \(\left (\sigma,\omega \right )\), is ‘good-λ’ controlled by the testing conditions and the Muckenhoupt and energy conditions. As a consequence, assuming the side conditions, we can eliminate the weak boundedness property from Theorem 1 of Sawyer et al. (A two weight fractional singular integral theorem with side conditions, energy and k-energy dispersed. arXiv:1603.04332v2) to obtain that T α is bounded from \(L^{2}\left (\sigma \right )\) to \(L^{2}\left (\omega \right )\) if and only if the testing conditions hold for T α and its dual. As a corollary we give a simple derivation of a two weight accretive global Tb theorem from a related T1 theorem. The role of two different parameterizations of the family of dyadic grids, by scale and by translation, is highlighted in simultaneously exploiting both goodness and NTV surgery with families of grids that are common to both measures.

This paper is dedicated to Dick Wheeden on the occasion of his retirement from Rutgers University, and for all of his fundamental contributions to the theory of weighted inequalities, in particular for the beautiful paper of Hunt, Muckenhoupt and Wheeden that started it all back in 1973.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, the testing conditions in Theorem 1 are subject to the same criticism due to the highly unstable nature of singular integrals acting on measures.

  2. 2.

    Traditionally, two independent grids are applied to f and g separately, something we avoid since the treatment of functional energy in the arguments of [27, 30] (which we use here) relies on using a common grid for f and g.

  3. 3.

    On page 41 of [30], there was a typo in that \(J \Subset _{\mathbf{\rho },\varepsilon }I\) appeared in the fourth line of the display instead of \(J\not\Subset _{\boldsymbol{\rho },\varepsilon }I\) as corrected here.

  4. 4.

    Both I and J belong to the common grid \(\mathcal{D}\), while K and L belong to the independent common grid \(\mathcal{D}^{{\prime}}\)—in contrast to the traditional use of two independent grids where \(I \in \mathcal{D}\) and \(J \in \mathcal{D}^{{\prime}}\).

References

  1. K. Astala, M.J. Gonzalez, Chord-arc curves and the Beurling transform. Invent. Math. 205 (1), 57–81 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Astala, M. Zinsmeister, Teichmüller spaces and BMOA. Math. Ann. 289 (4), 613–625 (1991)

    Google Scholar 

  3. R.R. Coifman, C.L. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)

    MathSciNet  MATH  Google Scholar 

  4. C.L. Fefferman, E.M. Stein, Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Hunt, B. Muckenhoupt, R.L. Wheeden, Weighted norm inequalities for the conjugate function and the Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Hytönen, The two weight inequality for the Hilbert transform with general measures. arXiv:1312.0843v2

    Google Scholar 

  7. T. Hytönen, H. Martikainen, On general local Tb theorems. arXiv:1011.0642v1

    Google Scholar 

  8. T. Iwaniec, G. Martin, Quasiconformal mappings and capacity. Indiana Univ. Math. J. 40 (1), 101–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. M.T. Lacey, Two weight inequality for the Hilbert transform: a real variable characterization. II. Duke Math. J. 163 (15), 2821–2840 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. M.T. Lacey, B.D. Wick, Two weight inequalities for Riesz transforms: uniformly full dimension weights. arXiv:1312.6163v1,v2,v3

    Google Scholar 

  11. M.T. Lacey, E.T. Sawyer, Uriarte-Tuero, I., Astala’s conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane. Acta Math. 204, 273–292 (2010)

    Google Scholar 

  12. M.T. Lacey, E.T. Sawyer, Uriarte-Tuero, I., A two weight inequality for the Hilbert transform assuming an energy hypothesis. J. Funct. Anal. 263 (2), 305–363 (2012)

    Google Scholar 

  13. M.T. Lacey, E.T. Sawyer, Shen, C.-Y., Uriarte-Tuero, I., Two weight inequality for the Hilbert transform: a real variable characterization I. Duke Math. J. 163 (15), 2795–2820 (2014)

    Google Scholar 

  14. M.T. Lacey, E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, B.D. Wick, Two weight inequalities for the Cauchy transform from \(\mathbb{R}\) to \(\mathbb{C}_{+}\). arXiv:1310.4820v4

    Google Scholar 

  15. F. Nazarov, A. Volberg, The Bellman function, the two weight Hilbert transform, and the embeddings of the model space K θ . J. d’Anal. Math. 87, 385–414 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Nazarov, S. Treil, A. Volberg, The Bellman function and two weight inequalities for Haar multipliers. J. Am. Math. Soc. 12, 909–928 (1999). MR 1685781 (2000k:42009)

    Google Scholar 

  17. F. Nazarov, S. Treil, A. Volberg, Accretive system Tb-theorems on nonhomogeneous spaces. Duke Math. J. 113 (2), 259–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Nazarov, S. Treil, A. Volberg, The Tb-theorem on non-homogeneous spaces. Acta Math. 190 (2), MR 1998349 (2003) (2005d:30053)

    Google Scholar 

  19. F. Nazarov, S. Treil, A. Volberg, Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures. preprint (2004) arxiv:1003.1596

    Google Scholar 

  20. N. Nikolski, S. Treil, Linear resolvent growth of rank one perturbation of a unitary operator does not imply its similarity to a normal operator. J. Anal. Math. 87, 415–431 (2002). MR1945291

    MathSciNet  MATH  Google Scholar 

  21. F. Peherstorfer, A. Volberg, P. Yuditskii, Two-weight Hilbert transform and Lipschitz property of Jacobi matrices associated to hyperbolic polynomials. J. Funct. Anal. 246, 1–30 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Peherstorfer, A. Volberg, P. Yuditskii, CMV matrices with asymptotically constant coefficients, Szegö–Blaschke class, Scattering Theory. J. Funct. Anal. 256 (7), 2157–2210 (2009)

    Article  MATH  Google Scholar 

  23. E. Sawyer, A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75, 1–11 (1982). MR{676801 (84i:42032)}

    Google Scholar 

  24. E. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans. A.M.S. 308, 533–545 (1988). MR{930072 (89d:26009)}

    Google Scholar 

  25. E.T. Sawyer, C.-Y. Shen, Uriarte-Tuero, I., A two weight theorem for α-fractional singular integrals with an energy side condition. Revista Mat. Iberoam 32 (1), 79–174 (2016)

    Google Scholar 

  26. E.T. Sawyer, C.-Y. Shen, Uriarte-Tuero, I., The two weight T1 theorem for fractional Riesz transforms when one measure is supported on a curve (2016, submitted)

    Google Scholar 

  27. E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, A two weight fractional singular integral theorem with side conditions, energy and k-energy dispersed. Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory, vol. 2 (Springer, 2016/2017), to appear

    Google Scholar 

  28. E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, Failure of necessity of the energy condition (2016)

    Google Scholar 

  29. E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, A two weight theorem for α -fractional singular integrals with an energy side condition and quasicube testing (2015)

    Google Scholar 

  30. E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, A two weight theorem for α-fractional singular integrals with an energy side condition, quasicube testing and common point masses (2016)

    MATH  Google Scholar 

  31. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, NJ, 1993)

    MATH  Google Scholar 

  32. A. Volberg, Calderón-Zygmund Capacities and Operators on Nonhomogeneous Spaces. CBMS Regional Conference Series in Mathematics (2003), MR{2019058 (2005c:42015)}

    Google Scholar 

  33. A. Volberg, P. Yuditskii, On the inverse scattering problem for Jacobi matrices with the spectrum on an interval, a finite system of intervals or a Cantor set of positive length. Comm. Math. Phys. 226, 567–605 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

E.T. Sawyer supported in part by NSERC.

C.-Y. Shen supported in part by the NSC, through grant NSC 104-2628-M-008 -003-MY4

I. Uriarte-Tuero has been partially supported by grants DMS-1056965 (US NSF), MTM2010-16232, MTM2015-65792-P (MINECO, Spain), and a Sloan Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric T. Sawyer .

Editor information

Editors and Affiliations

Appendix

Appendix

We assume notation as above. Define the bilinear form

$$\displaystyle{ \mathcal{B}\left (\,f,g\right ) \equiv \left \langle T_{\sigma }^{\alpha }f,g\right \rangle _{\omega },\ \ \ \ \ f \in L^{2}\left (\sigma \right ),g \in L^{2}\left (\omega \right ), }$$

restricted to functions f and g of compact support and mean zero. For each dyadic grid \(\mathcal{D}\) we then have

$$\displaystyle{ \mathcal{B}\left (\,f,g\right ) =\sum _{I,J\in \mathcal{D}\text{ }}\left \langle T_{\sigma }^{\alpha } \bigtriangleup _{I}^{\sigma }f,\bigtriangleup _{ J}^{\omega }g\right \rangle _{\omega }. }$$

Now define the bilinear forms

$$\displaystyle{ \mathcal{C}_{\mathcal{D}}\left (\,f,g\right ) =\sum _{I,J\in \mathcal{D}:\ I\text{ and }J\text{ are }\mathbf{r}\text{-close }}\left \langle T_{\sigma }^{\alpha } \bigtriangleup _{I}^{\sigma }f,\bigtriangleup _{ J}^{\omega }g\right \rangle _{\omega },\ \ \ \ \ f \in L^{2}\left (\sigma \right ),g \in L^{2}\left (\omega \right ). }$$

Thus the form \(\mathcal{C}_{\mathcal{D}}\left (\,f,g\right )\) sums over those pairs of cubes in the grid \(\mathcal{D}\) that are close in both scale and position, these being the only pairs where the need for a weak boundedness property traditionally arises. We also consider the subbilinear form

$$\displaystyle{ \mathcal{S}_{\mathcal{D}}\left (\,f,g\right ) =\sum _{I,J\in \mathcal{D}:\ I\text{ and }J\text{ are }\mathbf{r}\text{-close }}\left \vert \left \langle T_{\sigma }^{\alpha } \bigtriangleup _{I}^{\sigma }f,\bigtriangleup _{ J}^{\omega }g\right \rangle _{\omega }\right \vert,\ \ \ \ \ f \in L^{2}\left (\sigma \right ),g \in L^{2}\left (\omega \right ), }$$

which dominates \(\mathcal{C}_{\mathcal{D}}\left (\,f,g\right )\), i.e. \(\left \vert \mathcal{C}_{\mathcal{D}}\left (\,f,g\right )\right \vert \leq \mathcal{S}_{\mathcal{D}}\left (\,f,g\right )\) for all \(f \in L^{2}\left (\sigma \right ),g \in L^{2}\left (\omega \right )\). The main results above can be organized into the following two part theorem.

Theorem 5

With notation as above, we have:

  1. (1)

    For f and g of compact support and mean zero,

    $$\displaystyle\begin{array}{rcl} & & \mathbb{E}_{\Omega }\left \vert \mathcal{B}\left (\,f,g\right ) -\mathcal{C}_{\mathcal{D}}\left (\,f,g\right )\right \vert {}\\ & \leq & C_{\alpha }\left (\sqrt{\mathfrak{A}_{2 }^{\alpha }} + \mathfrak{T}_{T^{\alpha }} + \mathfrak{T}_{T^{\alpha }}^{{\ast}} + \mathcal{E}_{\alpha }^{\mathop{\mathrm{strong}}} + \mathcal{E}_{\alpha }^{\mathop{\mathrm{strong}},{\ast}} + 2^{-\varepsilon \mathbf{r}}\mathfrak{N}_{ T^{\alpha }}\right )\left \Vert \,f\right \Vert _{L^{2}\left (\sigma \right )}\left \Vert g\right \Vert _{L^{2}\left (\omega \right )} {}\\ & & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +C_{\alpha }\mathbb{E}_{\Omega }\mathcal{S}_{\mathcal{D}}\left (\,f,g\right ). {}\\ \end{array}$$
  2. (2)

    For f and g of compact support and mean zero, and for \(0 <\lambda <\frac{1} {2}\) ,

    $$\displaystyle{ \mathbb{E}_{\Omega }\mathcal{S}_{\mathcal{D}}\left (\,f,g\right ) \leq C_{\alpha }\left (\frac{1} {\lambda } \sqrt{\mathfrak{A}_{2 }^{\alpha }} + \mathfrak{T}_{T^{\alpha }} + \mathfrak{T}_{T^{\alpha }}^{{\ast}} + \root{4}\of{\lambda }\mathfrak{N}_{ T^{\alpha }}\right )\left \Vert \,f\right \Vert _{L^{2}\left (\sigma \right )}\left \Vert g\right \Vert _{L^{2}\left (\omega \right )}. }$$

The reason for emphasizing the two estimates in this way, is that a different proof strategy might produce a different bound for \(\mathbb{E}_{\Omega }\left \vert \mathcal{B}\left (\,f,g\right ) -\mathcal{C}_{\mathcal{D}}\left (\,f,g\right )\right \vert\), which can then be combined with the bound for \(\mathbb{E}_{\Omega }\mathcal{S}_{\mathcal{D}}\left (\,f,g\right )\) to control \(\left \vert \mathcal{B}\left (\,f,g\right )\right \vert\). Note also that the term \(C_{\alpha }\mathbb{E}_{\Omega }\mathcal{S}_{\mathcal{D}}\left (\,f,g\right )\) is included in part (1) of the theorem, to allow for some of the inner products in the definition of \(\mathcal{C}_{\mathcal{D}}\left (\,f,g\right )\) to be added back into the form \(\mathcal{B}\left (\,f,g\right ) -\mathcal{C}_{\mathcal{D}}\left (\,f,g\right )\) during the course of the proof of estimate (1). Indeed, this was done when controlling the form \(\mathsf{T}_{\mathop{\mathrm{far}}\mathop{ \mathrm{below}}}^{2}\left (\,f,g\right )\) above.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sawyer, E.T., Shen, CY., Uriarte-Tuero, I. (2017). A Good-λ Lemma, Two Weight T1 Theorems Without Weak Boundedness, and a Two Weight Accretive Global Tb Theorem. In: Chanillo, S., Franchi, B., Lu, G., Perez, C., Sawyer, E. (eds) Harmonic Analysis, Partial Differential Equations and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-52742-0_9

Download citation

Publish with us

Policies and ethics