Skip to main content

Densities with the Mean Value Property for Sub-Laplacians: An Inverse Problem

  • Chapter
  • First Online:
Harmonic Analysis, Partial Differential Equations and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Inverse problem results, related to densities with the mean value property for the harmonic functions, were recently proved by the authors. In the present paper we improve and extend them to the sub-Laplacians on stratified Lie groups.

Dedicated to Richard L. Wheeden

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Aharonov, M.M. Schiffer, L. Zalcman, Potato kugel.Isr. J. Math. 40, 331–339 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Aikawa, Integrability of superharmonic functions and subharmonic functions. Proc. Am. Math. Soc. 120, 109–117 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Aikawa, Densities with the mean value property for harmonic functions in a Lipschitz domain. Proc. Am. Math. Soc. 125, 229–234 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bonfiglioli, E. Lanconelli, On left invariant Hörmander operators in \(\mathbb{R}^{N}\). Applications to Kolmogorov-Fokker-Planck equations. J. Math. Sci. 171, 22–33 (2010)

    MATH  Google Scholar 

  5. A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their sub-Laplacians. Springer Monographs in Mathematics (Springer, Berlin, 2007)

    Google Scholar 

  6. G. Cupini, E. Lanconelli, On an inverse problem in potential theory. Rend. Lincei. Mat. Appl. 27, 431–442 (2016)

    MathSciNet  MATH  Google Scholar 

  7. B. Epstein,On the mean-value property of harmonic functions. Proc. Am. Math. Soc. 13, 830 (1962)

    MathSciNet  MATH  Google Scholar 

  8. B. Epstein, M.M. Schiffer, On the mean-value property of harmonic functions. J. Anal. Math. 14, 109–111 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Goldstein, W. Haussmann, L. Rogge, On the mean value property of harmonic functions and best harmonic L 1-approximation. Trans. Am. Math. Soc. 305, 505–515 (1988)

    MathSciNet  MATH  Google Scholar 

  10. W. Hansen, I. Netuka,Volume densities with the mean value property for harmonic functions.Proc. Am. Math. Soc. 123, 135–140 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ü. Kuran, On the mean-value property of harmonic functions. Bull. Lond. Math. Soc. 4, 311–312 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Lanconelli,“Potato kugel” for sub-Laplacians. Isr. J. Math. 194, 277–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author has been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermanno Lanconelli .

Editor information

Editors and Affiliations

Appendix: \(\mathcal{L}\)-Superharmonic Functions

Appendix: \(\mathcal{L}\)-Superharmonic Functions

In this section we recall the definition and list some properties of the \(\mathcal{L}\)-superharmonic functions, as presented in [5, Chap. 8].

Let \(\Omega \subseteq \mathbb{G}\) be open and let \(u: \Omega \rightarrow ] -\infty,\infty ]\) be lower semicontinuous. We say that u is \(\mathcal{L}\)-superharmonic in \(\Omega\) if

  1. (a)

    \(u \in L_{\mathrm{loc}}^{1}(\Omega )\) and \(\mathcal{L}(u) \leq 0\) in \(\Omega\) in the weak sense of distributions,

  2. (b)

    u is M r -continuous; i.e.,

    $$\displaystyle{u(x) =\lim _{r\rightarrow 0^{+}}M_{r}(u)(x)\qquad \forall x \in \Omega.}$$

Here M r denotes the average operator in (4).

A function \(v: \Omega \rightarrow [-\infty,\infty [\) is \(\mathcal{L}\)-subharmonic if − v is \(\mathcal{L}\)-superharmonic. We say that v is \(\mathcal{L}\)-harmonic if v is smooth and \(\mathcal{L}v = 0\).

Let \(\Gamma\) be the fundamental solution of \(\mathcal{L}\) and let μ be a nonnegative Radon measure in \(\mathbb{G}\). The \(\Gamma\)-potential of μ is defined as follows

$$\displaystyle{\Gamma _{\mu }(x):=\int _{\mathbb{G}}\Gamma (x^{-1} \circ y)\,d\mu (y),\qquad x \in \mathbb{G}.}$$

Obviously, if \(\Omega\) is an open set such that \(\mu (\Omega ^{c}) = 0\),

$$\displaystyle{\Gamma _{\mu }(x) =\int _{\Omega }\Gamma (x^{-1} \circ y)\,d\mu (y),\qquad x \in \Omega.}$$

The function \(\Gamma _{\mu }\) is nonnegative and lower semicontinuous; it is \(\mathcal{L}\)-superharmonic in \(\mathbb{G}\) if and only if there exists \(z \in \mathbb{G}\) such that \(\Gamma _{\mu }(z) <\infty\), see [5, Theorem 9.3.2].

In this case, see [5, Theorem 9.3.5],

$$\displaystyle{\mathcal{L}\Gamma _{\mu } = -\mu \quad \text{in the sense of distributions}}$$

and

$$\displaystyle{\Gamma _{\mu }\ \text{is }\mathcal{L}\text{-harmonic in }\mathbb{G}\setminus \mathop{ \mathrm{supp}}\nolimits \mu.}$$

For our purposes, the following remark is crucial.

Remark

Let \((\Omega,\mu,x_{0})\) be a \(\Gamma\)-triple (see Definition 2.2) and let \(A \subseteq \Omega\) be a Borel set. Then the function

$$\displaystyle{\mathbb{G} \ni x\mapsto \Gamma _{\mu _{A}}(x):=\int _{A}\Gamma (x^{-1} \circ y)\,d\mu (y)}$$

is the \(\Gamma\)-potential of \(\mu _{A}:=\mu \llcorner A\) and satisfies

$$\displaystyle{\Gamma _{\mu _{A}}(x) \leq \Gamma _{\mu }(x) = \Gamma (x^{-1} \circ x_{ 0}) <\infty \quad \forall x \in \Omega ^{c}.}$$

Moreover, \(\Gamma _{\mu _{A}}\) is \(\mathcal{L}\)-superharmonic in \(\mathbb{G}\) and

$$\displaystyle{\Gamma _{\mu _{A}}\ \text{is }\mathcal{L}\text{-harmonic in }O}$$

for every open set O ⊆ A c. Indeed O ⊆ A c implies \(O \subseteq \overline{A}^{c} \subseteq (\mathop{\mathrm{supp}}\nolimits \mu _{A})^{c}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cupini, G., Lanconelli, E. (2017). Densities with the Mean Value Property for Sub-Laplacians: An Inverse Problem. In: Chanillo, S., Franchi, B., Lu, G., Perez, C., Sawyer, E. (eds) Harmonic Analysis, Partial Differential Equations and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-52742-0_8

Download citation

Publish with us

Policies and ethics