Skip to main content

A Basic Overview of Fuel Cells: Thermodynamics and Cell Efficiency

  • Chapter
  • First Online:
Organic-Inorganic Composite Polymer Electrolyte Membranes

Abstract

In the last century, there has been rapid urbanization leading to increased energy demand with an ever increasing load on nonrenewable resources and subsequent escalation of pollution. A viable solution to these two problems can be a power supply technology that is able to produce energy with minimum or zero pollutant emission into the environment. Fuel cells appear to be an eco-friendly power supply technology. Main advantage of fuel cell technology is represented by direct conversion of fuels into electrical energy, with zero emissions, when hydrogen is used as fuel. This article describes the basic overview of fuel cell technology in order to better understand the construction and also the working principle of this eco-friendly technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbir F (2005) PEM fuel cells: theory and practice. Elsevier Academic Press

    Google Scholar 

  2. Energy USDo (2013) Fuel cell technologies overview (cited 10 Mar 2016)

    Google Scholar 

  3. History NMoA (cited 2016 15.04.2016); Available from: http://americanhistory.si.edu/fuelcells/origins/origins.htm

  4. Oniciu L (1976) Fuel cells. Abacus Press

    Google Scholar 

  5. Scott K et al (2012) Biological and microbial fuel cells. In: Sayigh A (ed) Comprehensive renewable energy. Elsevier, Amsterdam, pp 257–280

    Google Scholar 

  6. EG&G Technical Services I (2004) Fuel cell handbook, 7th edn. U.S. Department of Energy, Morgantown, West Virginia 26507 - 0880

    Google Scholar 

  7. Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sustain Energy Rev 16(1):981–989

    Article  CAS  Google Scholar 

  8. Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13(9):2430–2440

    Article  CAS  Google Scholar 

  9. Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377(1–2):1–35

    Article  CAS  Google Scholar 

  10. Liu Y et al (2016) A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles. J Power Sources 311:91–102

    Article  CAS  Google Scholar 

  11. Lepiller C (2016) Fuel cell basics. Available from: http://www.pragma-industries.com/wp-content/themes/default/images/fuel_cell_basics.pdf

  12. Cao D, Sun Y, Wang G (2007) Direct carbon fuel cell: fundamentals and recent developments. J Power Sources 167(2):250–257

    Article  CAS  Google Scholar 

  13. Duteanu N et al (2007) A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell. J Appl Electrochem 37(9):1085–1091

    Article  CAS  Google Scholar 

  14. Scott K et al (2008) Performance of a direct methanol alkaline membrane fuel cell. J Power Sources 175(1):452–457

    Article  CAS  Google Scholar 

  15. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: Fundamentals and applications. Renew Sustain Energy Rev 32:810–853

    Article  CAS  Google Scholar 

  16. Srinivasan S et al (1991) Proceedings of the third space electrochemical research and technology conference. High energy efficiency and high power density proton exchange membrane fuel cells–electrode kinetics and mass transport. J Power Sources 36(3):299–320

    Article  CAS  Google Scholar 

  17. Straßer K (1990) PEM-fuel cells: state of the art and development possibilities. Ber Bunsenges Phys Chem 94(9):1000–1005

    Article  Google Scholar 

  18. Gurau V et al (2007) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. Absolute permeability. J Power Sources 165(2):793–802

    Article  CAS  Google Scholar 

  19. Prater KB (1992) Proceedings of the second Grove fuel cell symposium. Progress in fuel cell commercialisation. Solid polymer fuel cell developments at Ballard. J Power Sources 37(1):181–188

    Google Scholar 

  20. Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22(1):1–7

    Article  CAS  Google Scholar 

  21. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31

    Article  CAS  Google Scholar 

  22. Biyikoglu A (2005) Review of proton exchange membrane fuel cell models. Int J Hydrogen Energy 30(11):1181–1212

    Article  CAS  Google Scholar 

  23. Strasser K (1992) Proceedings of the second Grove fuel cell symposium. Progress in fuel cell commercialisation. Mobile fuel cell development at Siemens. J Power Sources 37(1):209–219

    Google Scholar 

  24. Wang ZH, Wang CY, Chen KS (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J Power Sources 94(1):40–50

    Article  CAS  Google Scholar 

  25. Gurau V et al (2006) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers). J Power Sources 160(2):1156–1162

    Article  CAS  Google Scholar 

  26. Zhou W et al (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B 46(2):273–285

    Article  CAS  Google Scholar 

  27. Shukla S et al (2015) Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing. Electrochim Acta 156:289–300

    Article  CAS  Google Scholar 

  28. Oh H-S et al (2009) Corrosion resistance and sintering effect of carbon supports in polymer electrolyte membrane fuel cells. Electrochim Acta 54(26):6515–6521

    Article  CAS  Google Scholar 

  29. Alcaide F et al (2009) Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells. Electrochem Commun 11(5):1081–1084

    Article  CAS  Google Scholar 

  30. Guha A et al (2007) Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon 45(7):1506–1517

    Article  CAS  Google Scholar 

  31. Subramanian NP et al (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188(1):38–44

    Article  CAS  Google Scholar 

  32. Calvillo L et al (2009) Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers. J Power Sources 192(1):144–150

    Article  CAS  Google Scholar 

  33. Calvillo L et al (2007) Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J Power Sources 169(1):59–64

    Article  CAS  Google Scholar 

  34. Sebastian D et al (2009) Carbon nanofibers as electrocatalyst support for fuel cells: effect of hydrogen on their properties in CH4 decomposition. J Power Sources 192(1):51–56

    Article  CAS  Google Scholar 

  35. Andersen SM et al (2013) Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells, pp 94–101

    Google Scholar 

  36. Sebastian D et al (2010) Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. Int J Hydrogen Energy 35(18):9934–9942

    Article  CAS  Google Scholar 

  37. Li YH et al (2016) Preparation of platinum catalysts supported on functionalized graphene and the electrocatalytic properties for ethanol oxidation in direct ethanol fuel cell. J Mater Sci Mater Electron 27(6):6208–6215

    Article  CAS  Google Scholar 

  38. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384

    Article  CAS  Google Scholar 

  39. An L, Chen R (2016) Direct formate fuel cells: a review. J Power Sources 320:127–139

    Article  CAS  Google Scholar 

  40. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450

    Article  CAS  Google Scholar 

  41. Rimbu GA, Jackson CL, Scott K (2006) Platinum/carbon/polyaniline based nanocomposites as catalysts for fuel cell technology. J Optoelectron Adv Mater 8(2):611–616

    CAS  Google Scholar 

  42. Zhao TS, Li YS, Shen SY (2010) Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front Energy Power Eng Chin 4(4):443–458

    Article  Google Scholar 

  43. Zheng Y et al (2016) Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells, 448–453

    Google Scholar 

  44. Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70

    Article  CAS  Google Scholar 

  45. Bayatsarmadi B, Peters A, Talemi P (2016) Catalytic polymeric electrodes for direct borohydride fuel cells. J Power Sources 322:26–30

    Article  CAS  Google Scholar 

  46. Cheddie D, Munroe N (2005) Review and comparison of approaches to proton exchange membrane fuel cell modeling. J Power Sources 147(1–2):72–84

    Google Scholar 

  47. Giddey S et al (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust Sci 38(3):360–399

    Article  CAS  Google Scholar 

  48. Indig ME, Snyder RN (1962) Sodium borohydride, an interesting anodic fuel (1). J Electrochem Soc 109(11):1104–1106

    Article  CAS  Google Scholar 

  49. Iwan A, Malinowski M, Pasciak G (2015) Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates. Renew Sustain Energy Rev 49:954–967

    Article  CAS  Google Scholar 

  50. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1(1):5–39

    Article  CAS  Google Scholar 

  51. Divisek J et al (1998) Components for PEM fuel cell systems using hydrogen and CO containing fuels. Electrochim Acta 43(24):3811–3815

    Article  CAS  Google Scholar 

  52. Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130(1–2):61–76

    Google Scholar 

  53. Cindrella L et al (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194(1):146–160

    Article  CAS  Google Scholar 

  54. Oedegaard A et al (2004) Influence of diffusion layer properties on low temperature DMFC. J Power Sources 127(1–2):187–196

    Google Scholar 

  55. Neergat M, Shukla AK (2002) Effect of diffusion-layer morphology on the performance of solid-polymer-electrolyte direct methanol fuel cells. J Power Sources 104(2):289–294

    Article  CAS  Google Scholar 

  56. Feser JP, Prasad AK, Advani SG (2006) Experimental characterization of in-plane permeability of gas diffusion layers. J Power Sources 162(2):1226–1231

    Article  CAS  Google Scholar 

  57. Song M, Kim HY, Kim K (2014) Effects of hydrophilic/hydrophobic properties of gas flow channels on liquid water transport in a serpentine polymer electrolyte membrane fuel cell. 19714–19721

    Google Scholar 

  58. Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160(2):872–891

    Article  CAS  Google Scholar 

  59. Pan YH (2006) Advanced air-breathing direct methanol fuel cells for portable applications. J Power Sources 161(1):282–289

    Article  CAS  Google Scholar 

  60. Escribano S, Aldebert P (1995) Electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells. Solid State Ionics 77:318–323

    Article  CAS  Google Scholar 

  61. Fischer A, Jindra J, Wendt H (1998) Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. J Appl Electrochem 28(3):277–282

    Article  CAS  Google Scholar 

  62. Chandan A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278

    Article  CAS  Google Scholar 

  63. Escribano S, Aldebert P (1995) Solid state protonic conductors vii electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells. Solid State Ionics 77:318–323

    Article  CAS  Google Scholar 

  64. Shao Y et al (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167(2):235–242

    Article  CAS  Google Scholar 

  65. Liang Y et al (2006) Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. J Catal 238(2):468–476

    Article  CAS  Google Scholar 

  66. George MG et al (2016) Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis. J Power Sources 309:254–259

    Article  CAS  Google Scholar 

  67. Lobato J et al (2008) Influence of the teflon loading in the gas diffusion layer of PBI-based PEM fuel cells. J Appl Electrochem 38(6):793–802

    Article  CAS  Google Scholar 

  68. Guo Z, Faghri A (2006) Development of planar air breathing direct methanol fuel cell stacks. J Power Sources 160(2):1183–1194

    Article  CAS  Google Scholar 

  69. Bose S et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog Polym Sci 36(6):813–843

    Article  CAS  Google Scholar 

  70. Fathirad F, Afzali D, Mostafavi A (2016) Pd-Zn nanoalloys supported on Vulcan XC-72R carbon as anode catalysts for oxidation process in formic acid fuel cell

    Google Scholar 

  71. Chu YH, Shul YG (2010) Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. Int J Hydrogen Energy 35(20):11261–11270

    Article  CAS  Google Scholar 

  72. Kim HS et al (2016) Platinum catalysts protected by N-doped carbon for highly efficient and durable polymer-electrolyte membrane fuel cells. Electrochim Acta (in press)

    Google Scholar 

  73. Jongsomjit S, Prapainainar P, Sombatmankhong K (2016) Synthesis and characterisation of Pd-Ni-Sn electrocatalyst for use in direct ethanol fuel cells. Solid State Ionics 288:147–153

    Article  CAS  Google Scholar 

  74. Arashi T et al (2014) Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells. Catal Today Catal Mater Catal Low Carbon Technol 233:181–186

    CAS  Google Scholar 

  75. Han S, Chae GS, Lee JS (2016) Enhanced activity of carbon-supported PdCo electrocatalysts toward electrooxidation of ethanol in alkaline electrolytes. Korean J Chem Eng 33(6):1799–1804

    Article  CAS  Google Scholar 

  76. Kumar A, Ramani VK (2013) RuO2-SiO2 mixed oxides as corrosion-resistant catalyst supports for polymer electrolyte fuel cells. Appl Catal B 138–139:43–50

    Article  Google Scholar 

  77. Patru A et al (2016) Pt/IrO2–TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell—application in MEAs, performance and stability issues. Catal Today 262:161–169

    Article  CAS  Google Scholar 

  78. Uehara N et al (2015) Tantalum oxide-based electrocatalysts made from oxy-tantalum phthalocyanines as non-platinum cathodes for polymer electrolyte fuel cells. Ubiquitus Electrochem 146–153

    Google Scholar 

  79. Yi L et al (2015) Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. J Power Sources 285:325–333

    Article  CAS  Google Scholar 

  80. Kil KC et al (2014) The use of MWCNT to enhance oxygen reduction reaction and adhesion strength between catalyst layer and gas diffusion layer in polymer electrolyte membrane fuel cell. Int J Hydrogen Energy 39:17481–17486

    Article  CAS  Google Scholar 

  81. Chen Z et al (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4(9):3167–3192

    Article  CAS  Google Scholar 

  82. Reshetenko TV, Kim H-T, Kweon H-J (2007) Cathode structure optimization for air-breathing DMFC by application of pore-forming agents. J Power Sources 171(2):433–440

    Article  CAS  Google Scholar 

  83. Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Article  CAS  Google Scholar 

  84. Kinumoto T et al (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158(2):1222–1228

    Article  CAS  Google Scholar 

  85. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1–2):10–26

    Google Scholar 

  86. Prater KB (1994) Polymer electrolyte fuel cells: a review of recent developments. J Power Sources 51(1):129–144

    Article  CAS  Google Scholar 

  87. Sousa R Jr, Gonzalez ER (2005) Mathematical modeling of polymer electrolyte fuel cells. J Power Sources 147(1–2):32–45

    Google Scholar 

  88. Owejan JP et al (2007) Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell. Int J Hydrogen Energy 32(17):4489–4502

    Article  CAS  Google Scholar 

  89. Neburchilov V et al (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238

    Article  CAS  Google Scholar 

  90. DuPont (2016) Nafion—product bulletin P-12 (cited 10 May 2016). Available from: https://www.chemours.com/Nafion/en_US/assets/downloads/nafion-extrusion-cast-membranes-product-information.pdf

  91. Yu EH, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137(2):248–256

    Article  CAS  Google Scholar 

  92. Yu EH, Scott K (2005) Direct methanol alkaline fuel cells with catalysed anion exchange membrane electrodes. J Appl Electrochem 35(1):91–96

    Article  CAS  Google Scholar 

  93. Lim BH et al (2016) Effects of flow field design on water management and reactant distribution in PEMFC: a review. Ionics 22(3):301–316

    Article  CAS  Google Scholar 

  94. Nguyen TV (1996) A gas distributor design for proton—exchange—membrane fuel cells. J Electrochem Soc 143(5):L103–L105

    Article  CAS  Google Scholar 

  95. Rostami L, Mohamad Gholy Nejad P, Vatani A (2016) A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells. Energy 97:400–410

    Article  CAS  Google Scholar 

  96. Baek SM et al (2012) Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells. J Mech Sci Technol 26(9):2995–3006

    Article  Google Scholar 

  97. Hsieh S-S, Her B-S, Huang Y-J (2011) Effect of pressure drop in different flow fields on water accumulation and current distribution for a micro PEM fuel cell. Energy Convers Manag 52(2):975–982

    Article  CAS  Google Scholar 

  98. Yang H, Zhao TS, Ye Q (2005) Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells. J Power Sources 142(1–2):117–124

    Article  CAS  Google Scholar 

  99. Cho K-S (2015) The flow-field pattern optimization of the bipolar plate for PEMFC considering the nonlinear material. Int J Electrochem Sci 10:2564–2579

    Google Scholar 

  100. Beale SB (2015) Mass transfer formulation for polymer electrolyte membrane fuel cell cathode. Int J Hydrogen Energy 40:11641–11650

    Article  CAS  Google Scholar 

  101. Diedrichs A et al (2013) Effect of compression on the performance of a HT-PEM fuel cell. J Appl Electrochem 43(11):1079–1099

    Article  CAS  Google Scholar 

  102. Choi K-S, Kim H-M, Moon S-M (2011) Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC. Int J Hydrogen Energy 36(2):1613–1627

    Article  CAS  Google Scholar 

  103. Arvay A et al (2013) Nature inspired flow field designs for proton exchange membrane fuel cell. Int J Hydrogen Energy 38(9):3717–3726

    Article  CAS  Google Scholar 

  104. Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: Flow-field designs. Int J Hydrogen Energy 30(4):359–371

    Article  CAS  Google Scholar 

  105. Wang J, Wang H (2012) Flow-field designs of bipolar plates in pem fuel cells: theory and applications. Fuel Cells 12(6):989–1003

    Article  CAS  Google Scholar 

  106. Aricò AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Electrocatalysis of direct methanol fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–78

    Google Scholar 

  107. Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1(2):133–161

    Article  Google Scholar 

  108. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132

    Article  CAS  Google Scholar 

  109. Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169(2):239–246

    Article  CAS  Google Scholar 

  110. Kamarudin MZF et al (2013) Review: direct ethanol fuel cells. Int J Hydrogen Energy 38(22):9438–9453

    Article  CAS  Google Scholar 

  111. Lamy C, Coutanceau C, Leger JM (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Catalysis for sustainable energy production. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–46

    Google Scholar 

  112. An L et al (2010) Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int J Hydrogen Energy 35(9):4329–4335

    Article  CAS  Google Scholar 

  113. Modestov AD et al (2009) MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources 188(2):502–506

    Article  CAS  Google Scholar 

  114. Fujiwara N et al (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185(2):621–626

    Article  CAS  Google Scholar 

  115. An L et al (2011) Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J Power Sources 196(1):186–190

    Article  CAS  Google Scholar 

  116. An L, Zhao TS, Xu JB (2011) A bi-functional cathode structure for alkaline-acid direct ethanol fuel cells. Int J Hydrogen Energy 36(20):13089–13095

    Article  CAS  Google Scholar 

  117. Ha S, Dunbar Z, Masel RI (2006) Characterization of a high performing passive direct formic acid fuel cell. J Power Sources 158(1):129–136

    Article  CAS  Google Scholar 

  118. Jeong K-J et al (2007) Fuel crossover in direct formic acid fuel cells. J Power Sources 168(1):119–125

    Article  CAS  Google Scholar 

  119. Miesse CM et al (2006) Direct formic acid fuel cell portable power system for the operation of a laptop computer. J Power Sources 162(1):532–540

    Article  CAS  Google Scholar 

  120. Rice C et al (2002) Direct formic acid fuel cells. J Power Sources 111(1):83–89

    Article  CAS  Google Scholar 

  121. Boyaci San FG et al (2014) Evaluation of operating conditions on DBFC (direct borohydride fuel cell) performance with PtRu anode catalyst by response surface method. Energy 71:160–169

    Google Scholar 

  122. Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169

    Article  CAS  Google Scholar 

  123. Mahapatra MK, Singh P (2014) Fuel cells: energy conversion technology A2. In: Letcher TM (ed) Future energy, 2nd edn (Chap. 24). Elsevier, Boston, pp 511–547

    Google Scholar 

  124. Davidescu CM (2002) Introducere in termodinamica chimica. Editura Politehnica, Timisoara

    Google Scholar 

  125. Atkins P, de Paula J (2005) Atkins’ physical chemistry. Oxford University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narcis Duteanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Duteanu, N., Balasoiu, A., Chatterjee, P., Ghangrekar, M.M. (2017). A Basic Overview of Fuel Cells: Thermodynamics and Cell Efficiency. In: Inamuddin, D., Mohammad, A., Asiri, A. (eds) Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-52739-0_8

Download citation

Publish with us

Policies and ethics