Methods for the Preparation of Organic–Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells

  • Mashallah Rezakazemi
  • Mohtada Sadrzadeh
  • Toraj Mohammadi
  • Takeshi Matsuura
Chapter

Abstract

In the last decade, the organic–inorganic nanocomposite polymer electrolyte membranes (PEM) have gained high technical relevance in a wide range of fuel cells applications. The significance of nanocomposite membranes fabrication is particularly highlighted by the fact that one of the major challenges of this century is to provide well-performing and cost-effective membrane materials for fuel cells applications. Many efforts have been made in the development of advanced membranes with the aim to outperform the most commonly used polymer membranes. With the advances in nanomaterials and polymer chemistry, the innovative nanocomposite membranes with superior properties can be designed by various techniques including blending of nanoparticles in a polymer matrix, doping, or infiltration and precipitation of nanoparticles and precursors, self-assembly of nanoparticles, layer-by-layer fabrication method, and nonequilibrium impregnation reduction. This study presents a brief overview of these techniques and discusses the encountered challenges, the problems to be overcome, the major findings and guidance for future developments.

Keywords

Nanocomposite Synthesis Membrane Preparation Fuel cell 

References

  1. 1.
    Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52CrossRefGoogle Scholar
  2. 2.
    Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math Comput Model 55:1540–1557CrossRefGoogle Scholar
  3. 3.
    Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28:7303–7330CrossRefGoogle Scholar
  4. 4.
    Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRefGoogle Scholar
  5. 5.
    Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979CrossRefGoogle Scholar
  6. 6.
    Zhang H, Mao H, Wang J, Ding R, Du Z, Liu J, Cao S (2014) Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration. J Membr Sci 470:70–79CrossRefGoogle Scholar
  7. 7.
    Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861CrossRefGoogle Scholar
  8. 8.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances 5:82460–82470CrossRefGoogle Scholar
  9. 9.
    Rezakazemi M, Vatani A, Mohammadi T. Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci EngGoogle Scholar
  10. 10.
    Rezakazemi M, Iravaninia M, Shirazian S, Mohammadi T (2013) Transient computational fluid dynamics (CFD) modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane. Polym Eng Sci 53:1494–1501CrossRefGoogle Scholar
  11. 11.
    Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67CrossRefGoogle Scholar
  12. 12.
    Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232CrossRefGoogle Scholar
  13. 13.
    Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135CrossRefGoogle Scholar
  14. 14.
    Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041CrossRefGoogle Scholar
  15. 15.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589CrossRefGoogle Scholar
  16. 16.
    Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA–4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493CrossRefGoogle Scholar
  17. 17.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284CrossRefGoogle Scholar
  18. 18.
    Basile A, Gallucci F (2011) Membranes for membrane reactors: preparation, optimization and selection. Wiley, UKCrossRefGoogle Scholar
  19. 19.
    Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321CrossRefGoogle Scholar
  20. 20.
    Mulder M (1996) Basic principles of membrane technology, 2nd edn. Kluwer Academic Publishers, The NetherlandsCrossRefGoogle Scholar
  21. 21.
    Khulbe KC, Feng C, Matsuura T (2008) Synthetic polymeric membranes: characterization by atomic force microscopy. Springer, BerlinGoogle Scholar
  22. 22.
    Sadhukhan S (2011) Preparation and characterization of polymer electrolyte. National Institute of Technology, RourkelaGoogle Scholar
  23. 23.
    Caseri W (2007) Nanocomposites of polymers and inorganic particles. In: Hybrid materials, Wiley-VCH Verlag GmbH & Co. KGaA, pp 49–86Google Scholar
  24. 24.
    Tripathi BP (2010) Organic–inorganic nanocomposite polymer electrolyte membranes for electrochemical processes. Chemistry Department, Bhavnagar UniversityGoogle Scholar
  25. 25.
    Hay JN, Raval HM (2001) Synthesis of organic−inorganic hybrids via the non-hydrolytic sol−gel process. Chem Mater 13:3396–3403CrossRefGoogle Scholar
  26. 26.
    Pethaiah SS, Ulaganathan M, Ramalinga Viswanathan M, Chan SH (2015) Fabrication and electrochemical characterization of Pt–Pd impregnated nanocomposite polymer electrolyte membranes for high concentration DMFCs. RSC Adv 5:981–987CrossRefGoogle Scholar
  27. 27.
    Koh JK, Jeon Y, Cho YI, Kim JH, Shul Y-G (2014) A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications. J Mater Chem A 2:8652–8659CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mashallah Rezakazemi
    • 1
  • Mohtada Sadrzadeh
    • 2
  • Toraj Mohammadi
    • 3
  • Takeshi Matsuura
    • 4
  1. 1.Department of Chemical EngineeringShahrood University of TechnologyShahroodIran
  2. 2.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Faculty of Chemical Engineering, Research and Technology Centre for Membrane Separation ProcessesIran University of Science and Technology (IUST)TehranIran
  4. 4.Advanced Membrane Technology Research Centre (AMTEC)Universiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations