3D Reconstruction of Coronary Veins from a Single X-Ray Fluoroscopic Image and Pre-operative MR

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)


Cardiac resynchronization therapy (CRT) is an effective treatment for patients with congestive heart failure and ventricular dyssynchrony. Despite the overall efficacy of CRT, approximately 30% of patients receiving CRT do not improve. One of the main technical problems related to the CRT procedure is inadequate visualisation in X-ray fluoroscopy of the venous anatomy in relation to accurate cardiac chamber visualisation. This paper proposes a novel approach for 3D reconstruction of coronary veins from a single contrast enhanced intra-operative fluoroscopy image. For this application, the method uses back-projection geometry and a Euclidean distance/angle-based cost function. The algorithm is validated on a phantom and five patient datasets, comprising six view-angle orientations for the phantom dataset and two view-angle orientations for each of the patient datasets. Median(inter-quartile range) 3D-reconstruction accuracies of 1.41(0.55–3.00) mm and 3.28(2.10–4.89) mm were established for the phantom and patient data, respectively. The technique can facilitate careful advancement of the cannulating guide over a guidewire or a diagnostic catheter positioned in the coronary sinus, and consequently, improve the chances of response to CRT.


Coronary veins 3D reconstruction X-ray fluoroscopy 


Acknowledgements and Disclaimer

We acknowledge financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London, King’s College Hospital NHS Foundation Trust and Innovate UK. This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/L505328/1] and Innovate UK. Concepts and information presented are based on research and are not commercially available.


  1. 1.
    Blondel, C., Malandain, G., Vaillant, R., Ayache, N.: Reconstruction of coronary arteries from a single rotational x-ray projection sequence. IEEE Trans. Med. Imaging 25(5), 653–663 (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, S.Y.J., Carroll, J., Metz, C., Hoffmann, K.: Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images (2000(b))Google Scholar
  3. 3.
    Chiribiri, A., Kelle, S., Götze, S., Kriatselis, C., Thouet, T., Tangcharoen, T., Paetsch, I., Schnackenburg, B., Fleck, E., Nagel, E.: Visualization of the cardiac venous system using cardiac magnetic resonance. American J. Cardiol. 101(3), 407–412 (2008)CrossRefGoogle Scholar
  4. 4.
    Çimen, S., Gooya, A., Grass, M., Frangi, A.: Reconstruction of coronary arteries from x-ray angiography: a review. Med. Image Anal. 32, 46–68 (2016)CrossRefGoogle Scholar
  5. 5.
    Duckett, S., Chiribiri, A., Ginks, M., Sinclair, S., Knowles, B., Botnar, R., Carr White, G., Rinaldi, C., Nagel, E., Razavi, R.: Cardiac MRI to investigate myocardial scar and coronary venous anatomy using a slow infusion of dimeglumine gadobenate in patients undergoing assessment for cardiac resynchronization therapy. J. Magn. Reson. Imaging 33(1), 87–95 (2011)CrossRefGoogle Scholar
  6. 6.
    Guggenheim, N., Doriot, P., Dorsaz, P., Descouts, P., Rutishauser, W.: Spatial reconstruction of coronary arteries from angiographic images. Phys. Med. Biol. 36(1), 99 (1991)CrossRefGoogle Scholar
  7. 7.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518CrossRefzbMATHGoogle Scholar
  8. 8.
    Jolly, M.-P., Guetter, C., Lu, X., Xue, H., Guehring, J.: Automatic segmentation of the myocardium in cine MR images using deformable registration. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 98–108. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28326-0_10 CrossRefGoogle Scholar
  9. 9.
    Jongbloed, M.R., Lamb, H.J., Bax, J.J., Schuijf, J.D., de Roos, A., van der Wall, E.E., Schalij, M.J.: Noninvasive visualization of the cardiac venous system using multislice computed tomography. J. Am. Coll. Cardiol. 45(5), 749–753 (2005)CrossRefGoogle Scholar
  10. 10.
    Messenger, J., Chen, S., Carroll, J., Burchenal, J., Kioussopoulos, K., Groves, B.: 3D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients. Int. J. Card. Imaging 16(6), 413–427 (2000)CrossRefGoogle Scholar
  11. 11.
    Moss, A., Hall, W., Cannom, D., Klein, H., Brown, M., Daubert, J., Estes III, N.M., Foster, E., Greenberg, H., Higgins, S.: Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361(14), 1329–1338 (2009)CrossRefGoogle Scholar
  12. 12.
    Panayiotou, M., King, A., Housden, R., Ma, Y., Cooklin, M., O’Neill, M., Gill, J., Rinaldi, C., Rhode, K.: A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images. Med. phys. 41(7), 071901 (2014)CrossRefGoogle Scholar
  13. 13.
    Parker, D., Pope, D., Van Bree, R., Marshall, H.: Three-dimensional reconstruction of moving arterial beds from digital subtraction angiography. Comput. Biomed. Res. 20(2), 166–185 (1987)CrossRefGoogle Scholar
  14. 14.
    Rivero-Ayerza, M., Jessurun, E., Ramcharitar, S., van Belle, Y., Serruys, P., Jordaens, L.: Magnetically guided left ventricular lead implantation based on a virtual three-dimensional reconstructed image of the coronary sinus. Europace 10(9), 1042–1047 (2008)CrossRefGoogle Scholar
  15. 15.
    Ypenburg, C.E.: Noninvasive imaging in cardiac resynchronization therapy-part 1: selection of patients. Pacing Clin. Electrophysiol. 31(11), 1475–1499 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK
  2. 2.Deparment of CardiologyGuy’s and St. Thomas’ Hospitals NHS Foundation TrustLondonUK
  3. 3.Siemens Healthcare, LtdLondonUK
  4. 4.Medical Imaging Technologies, Siemens HealthineersPrincetonUSA
  5. 5.Siemens Healthcare GmbHForchheimGermany

Personalised recommendations