Learning Optimal Spatial Scales for Cardiac Strain Analysis Using a Motion Atlas

  • Matthew Sinclair
  • Devis Peressutti
  • Esther Puyol-Antón
  • Wenjia Bai
  • David Nordsletten
  • Myrianthi Hadjicharalambous
  • Eric Kerfoot
  • Tom Jackson
  • Simon Claridge
  • C. Aldo Rinaldi
  • Daniel Rueckert
  • Andrew P. King
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)

Abstract

Cardiac motion is inherently tied to the disease state of the heart, and as such can be used to identify the presence and extent of different cardiac pathologies. Abnormal cardiac motion can manifest at different spatial scales of the myocardium depending on the disease present. The importance of spatial scale in the analysis of cardiac motion has not previously been explicitly investigated. In this paper, a novel approach is presented for analysing myocardial strains at different spatial scales using a cardiac motion atlas to find the optimal scales for (1) predicting response to cardiac resynchronisation therapy and (2) identifying the presence of strict left bundle-branch block in a patient cohort of 34. Optimal spatial scales for the two applications were found to be \(4\%\) and \(16\%\) of left ventricular volume with accuracies of \(84.8 \pm 8.4\%\) and \(81.3 \pm 12.6\%\), respectively, using a repeated, stratified cross-validation.

References

  1. 1.
    Bai, W., et al.: Beyond the AHA 17-Segment model: motion-driven parcellation of the left ventricle. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2015. LNCS, vol. 9534, pp. 13–20. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28712-6_2 CrossRefGoogle Scholar
  2. 2.
    Bai, W., Shi, W., et al.: A cardiac atlas built from high resolution MR images of 1000 + normal subjects and atlas-based analysis of cardiac shape and motion. Med. Image Anal. 26(1), 133–145 (2015)CrossRefGoogle Scholar
  3. 3.
    Bassingthwaighte, J., van Beek, J.: Lightning and the heart: fractal behavior in cardiac function. Proc. IEEE 76(6), 693–699 (2002)CrossRefGoogle Scholar
  4. 4.
    Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Camici, P., Crea, F.: Coronary microvascular dysfunction. N. Engl. J. Med. 356(8), 830–40 (2007)CrossRefGoogle Scholar
  6. 6.
    De Craene, M., Duchateau, N., et al.: SPM to the heart: Mapping of 4D continuous velocities for motion abnormality quantification. In: Proceedings-International Symposium on Biomedical Imaging, pp. 454–457 (2012)Google Scholar
  7. 7.
    Duchateau, N., De Craene, M., et al.: Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16(8), 1532–1549 (2012)CrossRefGoogle Scholar
  8. 8.
    Duchateau, N., Sermesant, M.: Prediction of infarct localization from myocardial deformation. In: STACOM, vol. 9534, pp. 51–59 (2015)Google Scholar
  9. 9.
    Gotte, M., Germans, T., et al.: Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging: studies in normal and impaired left ventricular function. J. Am. Coll. Cardiol. 48(10), 2002–2011 (2006)CrossRefGoogle Scholar
  10. 10.
    Jackson, T., Sohal, M., et al.: A U-shaped type II contraction pattern in patients with strict left bundle branch block predicts super-response to cardiac resynchronization therapy. Heart Rhythm 11(10), 1790–1797 (2014)CrossRefGoogle Scholar
  11. 11.
    Kirk, J., Kass, D.: Electromechanical dyssynchrony and resynchronization of the failing heart. Circ. Res. 113(6), 765–776 (2013)CrossRefGoogle Scholar
  12. 12.
    Marxen, M., Sled, J., Henkelman, R.: Volume ordering for analysis and modeling of vascular systems. Ann. Biomed. Eng. 37(3), 542–551 (2009)CrossRefGoogle Scholar
  13. 13.
    Peressutti, D., Bai, W., Jackson, T., Sohal, M., Rinaldi, A., Rueckert, D., King, A.: Prospective identification of CRT super responders using a motion atlas and random projection ensemble learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 493–500. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_59 CrossRefGoogle Scholar
  14. 14.
    Peressutti, D., Bai, W., Shi, W., Tobon-Gomez, C., Jackson, T., Sohal, M., Rinaldi, A., Rueckert, D., King, A.: Towards left ventricular scar localisation using local motion descriptors. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2015. LNCS, vol. 9534, pp. 30–39. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28712-6_4 CrossRefGoogle Scholar
  15. 15.
    Perperidis, D., Mohiaddin, R., Rueckert, D.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 402–410. Springer, Heidelberg (2005). doi:10.1007/11566489_50 CrossRefGoogle Scholar
  16. 16.
    Rueckert, D., Sonoda, L., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  17. 17.
    Sinclair, M., Lee, J., et al.: Microsphere skimming in the porcine coronary arteries: Implications for flow quantification. Microvasc. Res. 100, 59–70 (2015)CrossRefGoogle Scholar
  18. 18.
    Sohal, M., Duckett, S., et al.: A prospective evaluation of cardiovascular magnetic resonance measures of dyssynchrony in the prediction of response to cardiac resynchronization therapy. J. Cardiovasc. Magn. Reson. 16, 58 (2014)CrossRefGoogle Scholar
  19. 19.
    Tian, Y., Zhang, P., et al.: True complete left bundle branch block morphology strongly predicts good response to cardiac resynchronization therapy. Europace 15(10), 1499–1506 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthew Sinclair
    • 1
  • Devis Peressutti
    • 1
  • Esther Puyol-Antón
    • 1
  • Wenjia Bai
    • 2
  • David Nordsletten
    • 1
  • Myrianthi Hadjicharalambous
    • 1
  • Eric Kerfoot
    • 1
  • Tom Jackson
    • 1
  • Simon Claridge
    • 1
  • C. Aldo Rinaldi
    • 1
  • Daniel Rueckert
    • 2
  • Andrew P. King
    • 1
  1. 1.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK
  2. 2.Biomedical Image Analysis GroupImperial College LondonLondonUK

Personalised recommendations