Correction of Slice Misalignment in Multi-breath-hold Cardiac MRI Scans

  • Benjamin Villard
  • Ernesto Zacur
  • Erica Dall’Armellina
  • Vicente Grau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)

Abstract

Cardiac Magnetic Resonance (CMR) provides unique functional and anatomical visualisation of the macro and micro-structures of the heart. However, CMR acquisition times usually necessitate slices to be acquired at different breath holds, which results in potential misalignment of the acquired slices. Correcting for this spatial misalignment is required for accurate three-dimensional (3D) reconstruction of the heart chambers allowing robust metrics for shape analysis among populations as well as precise representations of individual geometries and scars. While several methods have been proposed to realign slices, their use in other important protocols such as late gadolinium enhancement (LGE) is yet to be demonstrated. We propose a registration framework based on local phase to correct for slice misalignment. Our registration framework is a group registration technique combining long- and short-axis slices. Validation was performed on LGE slices using expert-traced ventricular contours. For 15 clinical multi-breath-hold datasets our method reduced the median discrepancy of moderately misaligned slices from 2.19 mm to 1.63 mm, and of severely misaligned from 7.33 mm to 1.96 mm.

Keywords

Slice misalignment Late gadolinium enhancement CMR 

References

  1. 1.
    escardio.org. European Cardiovascular Disease Statistics 2012 (2012)
  2. 2.
    Arevalo, H.J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu, K.C., Trayanova, N.A.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7 (2016)Google Scholar
  3. 3.
    Lamata, P., Sinclair, M., Kerfoot, E., Lee, A., Crozier, A., Blazevic, B., Land, S., Lewandowski, A.J., Barber, D., Niederer, S.: An automatic service for the personalization of ventricular cardiac meshes. J. R. Soc. Interface 11(91) (2013)Google Scholar
  4. 4.
    Young, A.A., Frangi, A.F.: Computational cardiac atlases: from patient to population and back. Exp. Physiol. 94(5), 578–596 (2009)CrossRefGoogle Scholar
  5. 5.
    Bogaert, J., Dymarkowski, S., Taylor, A.M., Muthurangu, V.: Clinical Cardiac MRI. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Su, Y., Tan, M.-L., Lim, C.-W., Teo, S.-K., Tan, R.-S., Wan, M., Selvaraj, S.K.: Automatic correction of motion artifacts in 4D left ventricle model reconstructed from MRI. In: Computing in Cardiology 2014, vol. 41, pp. 705–708 (2014)Google Scholar
  7. 7.
    Chandler, A.G., Pinder, R.J., Netsch, T., Schnabel, J.A., Hawkes, D.J., Hill, D.L.G., Razavi, R.: Correction of misaligned slices in multi-slice cardiovascular magnetic resonance using slice-to-volume registration. J. Cardiovasc. Magn. Reson. 10(1), 1–9 (2008)CrossRefGoogle Scholar
  8. 8.
    Zakkaroff, C., Radjenovic, A., Greenwood, J., Magee, D.: Stack alignment transform for misalignment correction in cardiac MR cine series. Technical report, University of Leeds (2012)Google Scholar
  9. 9.
    Lotjonen, J., Pollari, M., Kivisto, S., Lauerma, K.: Correction of movement artifacts from 4-D cardiac short- and long-axis MR data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 405–412 (2004)Google Scholar
  10. 10.
    Goshtasby, A.A., Turner, D.A.: Fusion of short-axis and long-axis cardiac MR images. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, 1996, pp. 202–211, June 1996Google Scholar
  11. 11.
    McLeish, K., Hill, D.L.G., Atkinson, D., Blackall, J.M., Razavi, R.: A study of the motion and deformation of the heart due to respiration. IEEE Trans. Med. Imaging 21(9), 1142–1150 (2002)CrossRefGoogle Scholar
  12. 12.
    Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural, Parallel Sci. Comput. 11(4), 351–368 (2003)MathSciNetMATHGoogle Scholar
  13. 13.
    Perperidis, D.: Spatio-temporal registration and modelling of the heart using cardiovascular MR imaging. Ph.D. thesis, Imperial College London (2006)Google Scholar
  14. 14.
    Ledesma-Carbayo, M.J., Kellman, P., Arai, A.E., McVeigh, E.R.: Motion corrected free-breathing delayed-enhancement imaging of myocardial infarction using nonrigid registration. J. Magn. Reson. Imaging 26(1), 184–190 (2007)CrossRefGoogle Scholar
  15. 15.
    Kovesi, P.: Image features from phase congruency. Videre: J. Comput. Vis. Res. 1(3), 1–26 (1999)Google Scholar
  16. 16.
    Bernstein, S., Bouchot, J.-L., Reinhardt, M., Heise, B.: Generalized analytic signals in image processing: comparison, theory and applications. In: Hitzer, E., Sangwine, S.J. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics, pp. 221–246. Springer, Basel (2013)CrossRefGoogle Scholar
  17. 17.
    Kelly, C., Neubauer, S., Choudhury, R., Dall’Armellina, E., Grau, V.: A local phase-based algorithm for registration of CMR scans from multiple visits. In: Computing in Cardiology 2014, pp. 937–940. IEEE (2014)Google Scholar
  18. 18.
    Derpanis, K.G.: Quadrature Filters. Department of Computer Science and Engineering, York University (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Benjamin Villard
    • 1
  • Ernesto Zacur
    • 1
  • Erica Dall’Armellina
    • 2
  • Vicente Grau
    • 1
  1. 1.Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
  2. 2.Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Acute Vascular Imaging CenterUniversity of OxfordOxfordUK

Personalised recommendations