Novel Framework to Integrate Real-Time MR-Guided EP Data with T1 Mapping-Based Computational Heart Models

  • Sebastian Ferguson
  • Maxime Sermesant
  • Samuel Oduneye
  • Sophie Giffard-Roisin
  • Michael Truong
  • Labonny Biswas
  • Nicholas Ayache
  • Graham Wright
  • Mihaela Pop
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)

Abstract

Real-time MRI-guided electrophysiology (EP) interventions hold the potential to replace conventional X-ray guided procedures aimed to eliminate potentially lethal scar-related arrhythmia. Furthermore, although cardiac MR can provide excellent structural information (i.e., anatomy and scar), these catheter-based procedures have limited electrical information due to sparse electrical maps recorded from endocardial surfaces. In this paper, we propose a novel framework to augment such sparse electrical maps with 3D transmural electrical wave propagation obtained non-invasively using computer modelling. First, we performed real-time MR-guided EP studies using a preclinical pig model (i.e., in 1 healthy and 2 chronically infarcted animals). Specifically, the MR scans employed 2D T1-mapping (1 × 1 × 5 mm spatial resolution) based on a multi-contrast late enhancement method. For the EP studies we used an MR-compatible system (Imricor). Second, the stacks of resulting segmented images were used to build 3D heart models with various zones (i.e., healthy, scar and gray zone). Lastly, the 3D heart models were coupled with simple monodomain reaction-diffusion equations (e.g. eikonal and Aliev-Panfilov). Our simulations showed that these mathematical formalisms are advantageous due to fast computations, allowing us to predict the electrical wave propagation through dense LV meshes (e.g. >100 K elements, element size ~1.5 mm) in <3 min on a consumer computer. Overall, preliminary results demonstrated that the 3D MCLE-based models predicted close activation times and patterns compared to our measured EP maps, while also providing 3D transmural information and a precise location of the infarction. Future work will focus on calibrating directly (in near real-time) T1-based personalized heart models from electrical maps obtained during real-time MR-guided EP mapping procedures.

Keywords

Cardiac MRI Modelling Electrophysiology Histopathology 

References

  1. 1.
    Stevenson, W.G.: Ventricular scars and VT tachycardia. Trans. Am. Clin. Assoc. 120, 403–412 (2009)Google Scholar
  2. 2.
    Bello, D., Fieno, D.S., Kim, R.J., et al.: Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J. Am. College Cardiol. 45(7), 1104–1108 (2005)CrossRefGoogle Scholar
  3. 3.
    Codreanu, A., Odille, F., et al.: Electro-anatomic characterization of post-infarct scars comparison with 3D myocardial scar reconstruction based on MRI. J. Am. Coll. Cardiol. 52, 839–842 (2008)CrossRefGoogle Scholar
  4. 4.
    Wijnmaalen, A., van der Geest, R., van Huls van Taxis, C., Siebelink, H., Kroft, L., Bax, J., Reiber, J., Schalij, M., et al.: Head-to-head comparison of c-e MRI and electroanatomical voltage mapping to assess post-infarct scar characteristics in patients with VT: real-time image integration and reversed registration. Eur. Heart J. 32, 104 (2011)CrossRefGoogle Scholar
  5. 5.
    Lardo, A.C., McVeigh, E.R., et al.: Visualization and temporal/spatial characterization of cardiac RF ablation lesions using MRI. Circulation 102(6), 698–705 (2000)CrossRefGoogle Scholar
  6. 6.
    Oduneye, S.O., Biswas, L., Ghate, S., Ramanan, V., Barry, J., Laish-Farkash, A., Kadmon, E., Zeidan Shwiri, T., Crystal, E., Wright, G.A.: The feasibility of endocardial propagation mapping using MR guidance in a swine model and comparison with standard electro-anatomical mapping. IEEE Trans. Med. Imaging 31(4), 977–983 (2012)CrossRefGoogle Scholar
  7. 7.
    Clayton, R.H., Panfilov, A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progr. Biophys. Mol. Biol. Rev. 96(1–3), 19–43 (2008)CrossRefGoogle Scholar
  8. 8.
    Pop, M., Ramanan, V., Yang, F., Zhang, L., Newbigging, S., Wright, G.: High resolution 3D T1* mapping and quantitative image analysis of the gray zone in chronic fibrosis. IEEE Trans. Biomed. Eng. 61(12), 2930–2938 (2014)CrossRefGoogle Scholar
  9. 9.
    Pop, M., Sermesant, M., Flor, R., Pierre, C., Mansi, T., Oduneye, S., Barry, J., Coudiere, Y., Crystal, E., Ayache, N., Wright, Graham, A.: In vivo contact EP data and ex vivo MR-based computer models: registration and model-dependent errors. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 364–374. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36961-2_41 CrossRefGoogle Scholar
  10. 10.
    Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulations. IEEE Trans. Med. Imaging 25(5), 612–625 (2006)CrossRefGoogle Scholar
  11. 11.
    Aliev, R., Panfilov, A.V.: A simple two variables model of cardiac excitation. Chaos, Soliton Fractals 7(3), 293–301 (1996)CrossRefGoogle Scholar
  12. 12.
    Nash, M.P., Panfilov, A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501–522 (2004)CrossRefGoogle Scholar
  13. 13.
    Keener, J.P., Sneeyd, J.: Mathematical Physiology. Spinger, New York (1998)MATHGoogle Scholar
  14. 14.
    Talbot, H., Duriez, C., Courtecuisse, H., Relan, J., Sermesant, M., Cotin, S., Delingette, H.: Towards real-time computation of cardiac electrophysiology for training simulator. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 298–306. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36961-2_34 CrossRefGoogle Scholar
  15. 15.
    Chinchapatnam, P., Rhode, K.S., Ginks, M., et al.: Model-based imaging of cardiac apparent conductivity and local conduction velocity for planning of therapy. IEEE Trans. Med. Imaging 27(11), 1631–1642 (2008)CrossRefGoogle Scholar
  16. 16.
    Li, Z., Athavale, P., Pop, M., Wright, G.A.: Multi-contrast reconstruction using compressed sensing with low rank and spatially-varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction. Magn. Reson. Med. (September 2016, in press (Pubmed)). doi:10.1002/mrm.26402

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sebastian Ferguson
    • 1
  • Maxime Sermesant
    • 2
  • Samuel Oduneye
    • 1
    • 3
  • Sophie Giffard-Roisin
    • 2
  • Michael Truong
    • 1
    • 4
  • Labonny Biswas
    • 1
  • Nicholas Ayache
    • 2
  • Graham Wright
    • 1
    • 3
  • Mihaela Pop
    • 1
    • 3
  1. 1.Sunnybrook Research InstituteTorontoCanada
  2. 2.Inria - Asclepios ProjectSophia AntipolisFrance
  3. 3.Medical BiophysicsUniversity of TorontoTorontoCanada
  4. 4.Kings College LondonLondonUK

Personalised recommendations