Novel Looped-Catheter-Based 2D-3D Registration Algorithm for MR, 3DRx and X-Ray Images: Validation Study in an Ex-vivo Heart

  • Michael V. N. Truong
  • Alison Liu
  • R. James Housden
  • Graeme P. Penney
  • Mihaela Pop
  • Kawal S. Rhode
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)


In this paper, a novel 2D-3D cardiac image registration algorithm is proposed for application in X-ray-guided catheterisation procedures, and relies on a common technique of inserting a catheter and then looping it inside a chamber of the heart for visual reference. Registration starts with the isocentre-supine constraint and then iteratively refined by maximising a feature-based area metric using an inserted catheter loop and the segmented cardiac border from one or more X-ray views. Maximisation is done in two stages: first correcting for translational motion, and then simultaneously correcting for rotations and translations. The two-staged approach is demonstrated to be more accurate than a similar single-staged approach in an explanted porcine heart. In this experiment, accuracy was demonstrated to be within the 5-mm clinical requirement. On average, the algorithm could register images with a mean target registration error (TRE) of 4.6-mm when using two X-rays (biplane), and a mean reprojection distance (RPD) of 1.9 mm using a single view (monoplane).


2D-3D registration Cardiac image registration Image-guided procedures MR 3DRx X-ray fluoroscopy Biplane X-ray 


  1. 1.
    Shea, J.B., Sweeney, M.O.: Cardiac resynchronization therapy: a patient’s guide. Circulation 108, e64–e66 (2003)CrossRefGoogle Scholar
  2. 2.
    Holmes, D.R., Williams, D.O.: Catheter-based treatment of coronary artery disease. Contemp. Rev. Intervent. Cardiol. 1, 60–73 (2008)Google Scholar
  3. 3.
    Lee, G., Sanders, P., Kalman, J.M.: Catheter ablation of atrial arrythmias: state of the art. Lancet 380(9852), 1509–1519 (2012)CrossRefGoogle Scholar
  4. 4.
    Lickfett, L., Mahesh, M., Vasamreddy, C., Bradley, D., Jayam, V., Eldadah, Z., Dickfeld, T.: Radiation exposure during catheter ablation of atrial fibrillation. Circulation 110, 3003–3010 (2004)CrossRefGoogle Scholar
  5. 5.
    Linte, C.A., Lang, P., Rettmann, M.E., Cho, D.S., Holmes III, D.R., Robb, R.A., Peters, T.M.: Accuracy considerations in image-guided cardiac interventions: experience and lessons learned. Int. J. Comput. Assist. Radiol. Surg. 7, 13–25 (2011)CrossRefGoogle Scholar
  6. 6.
    Rhode, K., Ma, Y., Housden, J., Karim, R., Razavi, R.: Clinical applications of image fusion for electrophysiology procedures. In: 9th IEEE ISBI, Barcelona, Spain (2012)Google Scholar
  7. 7.
    Gutiérrez, L.F., de Silva, R., Ozturk, C., Sonmez, M., Raman, V.K., Sachdev, V., Aviles, R.J., Waclawiw, M.A., McVeigh, E., Lederman, R.: Technology preview: X-ray fused with MRI during invasive cardiovascular procedures. Cathet. Cardiovasc. Interv. 70, 773–882 (2007)CrossRefGoogle Scholar
  8. 8.
    Daul, C., Lopen-Hernandez, J., Wolf, D., Karcher, G., Ethévenot, G.: 3-D multimodal cardiac data superimposition using 2-D image registration and 3-D reconstruction from multiple views. Image Vis. Comput. 27, 790–802 (2009)CrossRefGoogle Scholar
  9. 9.
    Truong, M., Gordon, T., Razavi, R., Penney, G., Rhode, Kawal, S.: Analysis of catheter-based registration with vessel-radius weighting of 3D CT data to 2D X-ray for cardiac catheterisation procedures in a phantom study. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 139–148. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28326-0_14 CrossRefGoogle Scholar
  10. 10.
    Ma, Y., Duckett, S., Chinchapatnam, P., Gao, G., Sheety, A., Rinaldi, C.A., Schaeffter, T., Rhode, K.S.: MRI to X-ray fluroscopy overlay for guidance of cardiac resynchronization therapy procedures. In: Computing in Cardiology, Belftast, Northern Ireland, UK (2010)Google Scholar
  11. 11.
    Truong, M.V.N., Penney, G.P., Rhode, K.S.: Feasibility study of looped-catheter-based 2D-3D image registration of CT and X-Rays for cardiac catheterization procedures in a phantom experiment. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 317–325. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36961-2_36 CrossRefGoogle Scholar
  12. 12.
    Pathak, C., Van Horn, M., Weeks, S., Bullitt, E.: Comparison of simultaneous and sequential two-view registration for 3D/2D registration of vascular images. In: MICCAI, Palm Springs, CA, USA (2005)Google Scholar
  13. 13.
    Zhang, H., Goodlett, C., Burke, T., Tustison, N.: ITK-SNAP, ITK-SNAP Team, 17 February 2011. Accessed 10 12 2012
  14. 14.
    van de Kraats, E.B., Penney, G.P., et al.: Standardized evaluation methodology for 2-D–3-D registration. IEEE Trans. Med. Imaging 24(9), 1177–1189 (2005)CrossRefGoogle Scholar
  15. 15.
    Sinclair, D.: S-hull; a fast sweep hull routine for Delauney triangulation 2010.
  16. 16.
    Johnson, A.: Clipper - an open source freeware polygon clipping library, 23 May 2013.
  17. 17.
    Cazalas, M., Bismuth, V., Vaillant, R.: An image-based catheter segmentation algorithm for optimized electrophysiology procedure workflow. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 182–190. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38899-6_22 CrossRefGoogle Scholar
  18. 18.
    Albà, X., Rosa, M., i Ventura, F., Lekadir, K., Tobon-Gomez, C., Hoogendoorn, C., Frangi, A.F.: Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints. Magn. Reson. Med. 72(6), 1775–1784 (2013)CrossRefGoogle Scholar
  19. 19.
    Xu, R., Athavale, P., Nachman, A., Wright, G.A.: Multiscale registration of real-time and prior MRI data for image-guided cardiac interventions. IEEE Trans. Biomed. Eng. 61(10), 2621–2632 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael V. N. Truong
    • 1
    • 2
  • Alison Liu
    • 1
  • R. James Housden
    • 1
  • Graeme P. Penney
    • 1
  • Mihaela Pop
    • 2
    • 3
  • Kawal S. Rhode
    • 1
  1. 1.Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonEngland, UK
  2. 2.Physical Sciences, Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
  3. 3.Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations