Estimation of Purkinje Activation from ECG: An Intermittent Left Bundle Branch Block Study

  • Sophie Giffard-Roisin
  • Lauren Fovargue
  • Jessica Webb
  • Roch Molléro
  • Jack Lee
  • Hervé Delingette
  • Nicholas Ayache
  • Reza Razavi
  • Maxime Sermesant
Conference paper

DOI: 10.1007/978-3-319-52718-5_15

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)
Cite this paper as:
Giffard-Roisin S. et al. (2017) Estimation of Purkinje Activation from ECG: An Intermittent Left Bundle Branch Block Study. In: Mansi T., McLeod K., Pop M., Rhode K., Sermesant M., Young A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science, vol 10124. Springer, Cham

Abstract

Modelling the cardiac electrophysiology (EP) can help understand pathologies and predict the response to therapies such as cardiac resynchronization. To this end, estimating patient-specific model parameters is crucial. In the case of patients with bundle branch blocks (BBB), part of the Purkinje system is often affected. The aim of this work is to estimate the activation of the right and left Purkinje systems from standard non-invasive techniques: magnetic resonance imaging (MRI) and 12-lead electrocardiogram (ECG). As it is difficult to differentiate the contribution of the Purkinje system, this work relies on a particular intermittent left BBB (LBBB) case where both LBBB and absence of LBBB (ALBBB) were recorded on different 12-lead ECGs. First, an efficient forward EP model is proposed by coupling a Mitchell-Schaeffer cardiac model with a current dipole formulation that simulates the ECG. We used the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm to optimize the 3 parameters by minimizing the error with the real ECG. The estimation of conduction velocity (CV) parameters for LBBB and ALBBB shows a good agreement on the myocardial CV (0.39 m/s for ABBB, 0.40 m/s for LBBB), while the estimation of the left Purkinje CV seems to identify the pathology (1.32 m/s for ALBBB, 0.49 m/s for LBBB). Finally, the plots of the simulated 12-lead ECGs together with the ground truth ECGs indicate similar shapes.

Keywords

Electrophysiology Electrophysiological model Forward EP model Parameter estimation Purkinje system 

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sophie Giffard-Roisin
    • 1
  • Lauren Fovargue
    • 2
  • Jessica Webb
    • 2
  • Roch Molléro
    • 1
  • Jack Lee
    • 2
  • Hervé Delingette
    • 1
  • Nicholas Ayache
    • 1
  • Reza Razavi
    • 2
  • Maxime Sermesant
    • 1
  1. 1.Inria, Asclepios Research ProjectSophia AntipolisFrance
  2. 2.Department of Biomedical EngineeringKing’s College LondonLondonUK

Personalised recommendations