Standardised Framework to Study the Influence of Left Atrial RF Catheter Ablation Parameters on Permanent Lesion Formation

  • Marta Nuñez-Garcia
  • David Andreu
  • Marta Male
  • Francisco Alarcon
  • Lluís Mont
  • Constantine Butakoff
  • Oscar Camara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)

Abstract

Radiofrequency ablation is a common procedure to treat atrial fibrillation, where the objective is to electrically isolate some regions of the myocardium from others to avoid the transmission of abnormal electrical signals. This is done with a catheter by delivering an RF signal in the targeted regions. Ideally, the signal will create a permanent lesion that would prevent the reappearance of the abnormal electrical signals and therefore terminate AF. There are many parameters involved in the process and naturally in its success. In this paper we present a framework for comparing RF ablation related parameters such as power of the signal, contact force, temperature and impedance with permanent and effective lesion formation. In order to do that we propose to use a standardised unfold map that allows us to directly compare atria with different shapes at different time-points and with different types of information. We tested the method in 8 real cases showing that it facilitates the analysis and comparison of the ablation related parameters with the outcome of the procedure.

Keywords

Left atrium Radiofrequency catheter ablation Contact Force Pulmonary vein isolation Unfold map 

References

  1. 1.
    Andreu, D., Gomez-Pulido, F., Calvo, M., Carlosena-Remírez, A., Bisbal, F., Borràs, R., Benito, E., Guasch, E., Prat-Gonzalez, S., Perea, R.J., et al.: Contact force threshold for permanent lesion formation in atrial fibrillation ablation: a cardiac magnetic resonance-based study to detect ablation gaps. Heart Rhythm 13(1), 37–45 (2016)CrossRefGoogle Scholar
  2. 2.
    Attene, M., Falcidieno, B.: Remesh: an interactive environment to edit and repair triangle meshes. In: IEEE International Conference on Shape Modeling and Applications, p. 41 (2006)Google Scholar
  3. 3.
    Benito, E., Carlosena-Remírez, A., Guasch, E., Prat-Gonzalez, S., Perea, R.J., Figueras, R., Borràs, R., Andreu, D., Arbelo, E., Tolosana, J.M., Bisbal, F., Berruezo, A., Brugada, J., Mont, L.: Left atrial fibrosis quantification by late gadolinium enhancement magnetic resonance: a new method to standardize the thresholds for reproducibility. Europace. Epub ahead of print (2016)Google Scholar
  4. 4.
    Bisbal, F., Guiu, E., Cabanas-Grandío, P., Berruezo, A., Prat-Gonzalez, S., Vidal, B., Garrido, C., Andreu, D., Fernandez-Armenta, J., Tolosana, J.M., et al.: Cmr-guided approach to localize and ablate gaps in repeat af ablation procedure. JACC: Cardiovasc. Imaging 7(7), 653–663 (2014)Google Scholar
  5. 5.
    Calkins, H., Kuck, K.H., Cappato, R., Brugada, J., Camm, A.J., Chen, S.A., Crijns, H.J., Damiano, R.J., Davies, D.W., DiMarco, J., et al.: 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace 14(4), 528–606 (2012)CrossRefGoogle Scholar
  6. 6.
    Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)CrossRefGoogle Scholar
  7. 7.
    Ganesan, A.N., Shipp, N.J., Brooks, A.G., Kuklik, P., Lau, D.H., Lim, H.S., Sullivan, T., Roberts-Thomson, K.C., Sanders, P.: Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis. J. Am. Heart Assoc. 2(2), e004549 (2013)CrossRefGoogle Scholar
  8. 8.
    Nuñez Garcia, M., Tobon-Gomez, C., Rhode, K., Bijnens, B., Camara, O., Butakoff, C.: Quantification of gaps in ablation lesions around the pulmonary veins in delayed enhancement MRI. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 215–222. Springer, Heidelberg (2015). doi:10.1007/978-3-319-20309-6_25 CrossRefGoogle Scholar
  9. 9.
    Haissaguerre, M., Jaïs, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., Garrigue, S., Le Mouroux, A., Le Métayer, P., Clémenty, J.: Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New Engl. J. Med. 339(10), 659–666 (1998)CrossRefGoogle Scholar
  10. 10.
    Karim, R., Ma, Y., Jang, M., Housden, R.J., Williams, S.E., Chen, Z., Ataollahi, A., Althoefer, K., Rinaldi, C.A., Razavi, R., et al.: Surface flattening of the human left atrium and proof-of-concept clinical applications. Comput. Med. Imaging Graph. 38(4), 251–266 (2014)CrossRefGoogle Scholar
  11. 11.
    Kuppahally, S.S., Akoum, N., Badger, T.J., Burgon, N.S., Haslam, T., Kholmovski, E., Macleod, R., McGann, C., Marrouche, N.F.: Echocardiographic left atrial reverse remodeling after catheter ablation of atrial fibrillation is predicted by preablation delayed enhancement of left atrium by magnetic resonance imaging. Am. Heart J. 160(5), 877–884 (2010)CrossRefGoogle Scholar
  12. 12.
    McGann, C., Kholmovski, E., Blauer, J., Vijayakumar, S., Haslam, T., Cates, J., DiBella, E., Burgon, N., Wilson, B., Alexander, A., et al.: Dark regions of no-reflow on late gadolinium enhancement magnetic resonance imaging result in scar formation after atrial fibrillation ablation. J. Am. Coll. Cardiol. 58(2), 177–185 (2011)CrossRefGoogle Scholar
  13. 13.
    Peters, D.C., Wylie, J.V., Hauser, T.H., Nezafat, R., Han, Y., Woo, J.J., Taclas, J., Kissinger, K.V., Goddu, B., Josephson, M.E., et al.: Recurrence of atrial fibrillation correlates with the extent of post-procedural late gadolinium enhancement: a pilot study. JACC: Cardiovasc. Imaging 2(3), 308–316 (2009)Google Scholar
  14. 14.
    Shurrab, M., Di Biase, L., Briceno, D.F., Kaoutskaia, A., Haj-Yahia, S., Newman, D., Lashevsky, I., Nakagawa, H., Crystal, E.: Impact of contact force technology on atrial fibrillation ablation: a meta-analysis. J. Am. Heart Assoc. 4(9), e002476 (2015)CrossRefGoogle Scholar
  15. 15.
    Thomas, S.P., Aggarwal, G., Boyd, A.C., Jin, Y., Ross, D.L.: A comparison of open irrigated and non-irrigated tip catheter ablation for pulmonary vein isolation. Europace 6(4), 330–335 (2004)CrossRefGoogle Scholar
  16. 16.
    Tobon-Gomez, C., Zuluaga, M.A., Chubb, H., Williams, S.E., Butakoff, C., Karim, R., Camara, O., Ourselin, S., Rhode, K.: Standardised unfold map of the left atrium: regional definition for multimodal image analysis. J. Cardiovasc. Magn. Reson. 17(1), 1 (2015)CrossRefGoogle Scholar
  17. 17.
    Yamane, T., Jaïs, P., Shah, D.C., Hocini, M., Peng, J.T., Deisenhofer, I., Clémenty, J., Haïssaguerre, M.: Efficacy and safety of an irrigated-tip catheter for the ablation of accessory pathways resistant to conventional radiofrequency ablation. Circulation 102(21), 2565–2568 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marta Nuñez-Garcia
    • 1
  • David Andreu
    • 2
  • Marta Male
    • 1
  • Francisco Alarcon
    • 2
  • Lluís Mont
    • 2
  • Constantine Butakoff
    • 1
  • Oscar Camara
    • 1
  1. 1.PhySense, DTICUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Arrhythmia Section, Cardiology DepartmentThorax Institute, Hospital Clínic and IDIBAPS (Institut d’Investigacions Biomèdiques August Pi i Sunyer)BarcelonaSpain

Personalised recommendations