Cartan Frame Analysis of Hearts with Infarcts

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10124)

Abstract

Muscle fibers in healthy hearts follow a regular geometry, with streamlines that lie along close to parallel helical curves. This regularity is disrupted in the presence of myocardial infarction which results in a loss of contractile function due to the necrosis of myocytes and the build up of collagen. However, intermediate situations also exist with partly functional surrounding border zones. The precise manner in which fiber geometry is remodeled following the occurrence of an infarct is not known. Here we demonstrate the promise of Cartan frame fitting to diffusion magnetic resonance images of the heart to address this question. We use the error of fit of these models to the first principal eigen vector of the diffusion tensor to capture the degree of local fiber coherence. The first study of its kind in application to myocardial infarction, our experiments on porcine hearts reveal measures to assess damage that are complementary to existing scalar ones, such as the apparent diffusion coefficient or the fractional anisotropy. Cartan frame fitting provides valuable additional information about local fiber geometry.

References

  1. 1.
    Bayer, J., Blake, R., Plank, G., Trayanova, N.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10), 2243–2254 (2012)CrossRefGoogle Scholar
  2. 2.
    de Baker, J.M., Coronel, R., Tasseron, S., Wilde, A.A., Opthof, T., Janse, M.J., van Capelle, F.J., Becker, A.E., Jambroes, G.: Ventricular tachyrdia in the infarcted, langendorff-perfused human heart: role of the arrangement of surviving cardiac fibers. J. Am. Coll. Cardiol. 15(7), 1594–1607 (1990)CrossRefGoogle Scholar
  3. 3.
    Holmes, J., Yamashita, H., Waldman, L., Covell, J.: Scar remodeling and transmural deformation after infarction in the pig. Circulation 90(1), 411–420 (1994)CrossRefGoogle Scholar
  4. 4.
    Horowitz, A., Perl, M., Sideman, S.: Geodesics as a mechanically optimal fiber geometry for the left ventricle. Basic. Res. Cardiol. 88(Suppl 2), 67–74 (1993)Google Scholar
  5. 5.
    McCormick, R.J., Musch, T.I., Bergman, B.C., Thomas, D.P.: Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am. J. Physiol. Heart Circulatory Physiol. 266(1), H354–H359 (1994)Google Scholar
  6. 6.
    Peskin, C.S.: Fiber architecture of the left ventricular wall: an asymptotic analysis. Commun. Pure Appl. Math. 42(1), 79–113 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Piuze, E., Sporring, J., Siddiqi, K.: Maurer-cartan forms for fields on surfaces: application to heart fiber geometry. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2492–2504 (2015)CrossRefGoogle Scholar
  8. 8.
    Pop, M., Ghugre, N.R., Ramanan, V., Morikawa, L., Stanisz, G., Dick, A.J., Wright, G.A.: Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods. Phys. Med. Biol. 58(15), 5009 (2013)CrossRefGoogle Scholar
  9. 9.
    Savadjiev, P., Strijkers, G.J., Bakermans, A.J., Piuze, E., Zucker, S.W., Siddiqi, K.: Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc. Natl. Acad. Sci. 109(24), 9248–9253 (2012)CrossRefGoogle Scholar
  10. 10.
    Streeter, D.D.: Gross morphology and fiber geometry of the heart. In: Berne, R.M., Sperelakis, N. (eds.) Handbook of Physiology, Section 2. The Heart, pp. 61–112. Williams and Wilkins, New York (1979)Google Scholar
  11. 11.
    Swynghedauw, B.: Molecular mechanisms of myocardial remodeling. Physiol. Rev. 79(1), 215–262 (1999)Google Scholar
  12. 12.
    Ursell, P.C., Gardner, P.I., Albala, A., Fenoglio, J., Wit, A.L.: Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ. Res. 56(3), 436–451 (1985)CrossRefGoogle Scholar
  13. 13.
    Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S.P., Barillot, C.: Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5242, pp. 171–179. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85990-1_21 CrossRefGoogle Scholar
  14. 14.
    Wu, E.X., Wu, Y., Nicholls, J.M., Wang, J., Liao, S., Zhu, S., Lau, C.-P., Tse, H.-F.: MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn. Reson. Med. 58(4), 687–695 (2007)CrossRefGoogle Scholar
  15. 15.
    Wu, M.-T., Su, M.-Y.M., Huang, Y.-L., Chiou, K.-R., Yang, P., Pan, H.-B., Reese, T.G., Wedeen, V.J., Tseng, W.-Y.I.: Sequential changes of myocardial microstructure in patients postmyocardial infarction by diffusion-tensor cardiac mr correlation with left ventricular structure and function. Circ. Cardiovasc. Imaging 2(1), 32–40 (2009)CrossRefGoogle Scholar
  16. 16.
    Zipes, D.P.: Epidemiology and mechanisms of sudden cardiac death. Can. J. Cardiol. 21, 37A–40A (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer Science and Centre for Intelligent MachinesMcGill UniversityQuebecCanada
  2. 2.Department of Medical Biophysics, Sunnybrook Research InstituteUniversity of TorontoTorontoCanada

Personalised recommendations