Skip to main content

Spray Impingement Fundamentals

  • Chapter
  • First Online:
Metal Sprays and Spray Deposition
  • 1553 Accesses

Abstract

Chapter 5 will review the dynamics of both single droplets and sprays of molten metals landing on solid surfaces. Droplets landing on a solid substrate flatten out and solidify; the splats may either be disc shaped or fragmented, depending on impact conditions. Multiple droplets impacting on a surface fuse with each other to form a solid layer. The dynamics of single droplet impact and solidification are discussed. The thermal contact resistance between the droplet and substrate on the solidification rate is important in determining the solidification rate and the splat shape. An overview is given of numerical models to simulate droplet impact and solidification. The impact and coalescence of multiple droplets in a spray to form a solid layer is described. Monte Carlo and smoothed particle hydrodynamics methods can be used to simulate droplet impact and coalescence in a spray and predict properties such as coating thickness and porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukanuma H., Ohmori A. (1994). Behavior of molten droplets impinging on flat surfaces. Proceedings of the 7th National Thermal Spray Conference, 563–568.

    Google Scholar 

  2. Inada, S., & Yang, W.-J. (1994). Solidification of molten metal droplets impinging on a cold surface. Experimental Heat Transfer, 7, 93–100.

    Article  Google Scholar 

  3. Pasandideh-Fard, M., Bhola, R., Chandra, S., & Mostaghimi, J. (1998). Deposition of tin droplets on a steel plate: Simulations and experiments. International Journal of Heat and Mass Transfer, 41, 2929–2945.

    Article  Google Scholar 

  4. Aziz, S. D., & Chandra, S. (2000). Impact, recoil and splashing of molten metal droplets. International Journal of Heat and Mass Transfer, 43, 2841–2857.

    Article  Google Scholar 

  5. Mehdizadeh, N. Z., Raessi, M., Chandra, S., & Mostaghimi, J. (2004). Effect of substrate temperature on splashing of molten tin droplets. ASME Journal of Heat Transfer, 126, 445–452.

    Article  Google Scholar 

  6. Dhiman, R., & Chandra, S. (2005). Freezing-induced splashing during impact of molten metal droplets with high Weber numbers. International Journal of Heat & Mass Transfer, 48, 5625–5638.

    Article  Google Scholar 

  7. Madejski, J. (1976). Solidification of droplets on a cold surface. International Journal of Heat & Mass Transfer, 19, 1009–1013.

    Article  Google Scholar 

  8. Bennet, T., & Poulikakos, D. (1994). Heat transfer aspects of splat-quench solidification: Modelling and experiment. Journal of Materials Science, 29, 2025–2039.

    Article  Google Scholar 

  9. Pasandideh-Fard, M., Qiao, Y. M., Chandra, S., & Mostaghimi, J. (1996). Capillary effects during droplet impact on a solid surface. Physics of Fluids, 8, 650–659.

    Article  Google Scholar 

  10. Poirier, D. R., & Poirier, E. J. (1994). Heat transfer fundamentals for metal casting (2nd ed.pp. 41–42). Warrendale, PA: Minerals, Metals and Materials Society.

    Google Scholar 

  11. Wang, G. X., & Matthys, E. F. (1996). On the heat transfer at the interface between a solidifying metal and a solid substrate. In E. F. Matthys & W. G. Truckner (Eds.), Metal spinning, strip casting and slab casting. Warrendale, PA: Minerals, Metals and Materials Society.

    Google Scholar 

  12. Liu, W., Wang, G. X., & Matthys, E. F. (1995). Thermal analysis and measurements for a molten metal drop impacting on a substrate: cooling, solidification and heat transfer coefficient. International Journal of Heat and Mass Transfer, 38, 1387–1395.

    Article  Google Scholar 

  13. Loulou, T., Artyukhin, E. A., & Bardon, J. P. (1999). Estimation of thermal contact resistance during the first stages of metal solidification process: II- experimental set-up and results. International Journal of Heat and Mass Transfer, 42, 2119–2127.

    Article  Google Scholar 

  14. Aziz, S. D., & Chandra, S. (2000). Impact recoil and splashing of molten metal droplets. The International Journal of Heat and Mass Transfer, 43, 2841–2857.

    Article  Google Scholar 

  15. Wang, W., & Qiu, H. H. (2002). Interfacial thermal conductance in rapid contact solidification process. International Journal of Heat and Mass Transfer, 45, 2043–2053.

    Article  Google Scholar 

  16. Heichal, Y., & Chandra, S. (2005). Predicting thermal contact resistance between molten metal droplets and a solid surface. Journal of Heat Transfer, 127, 1269–1275.

    Article  Google Scholar 

  17. McDonald, A., Moreau, C., & Chandra, S. (2007). Thermal contact resistance between plasma-sprayed particles and flat surfaces. International Journal of Heat and Mass Transfer, 50, 1737–1749.

    Article  Google Scholar 

  18. Pershin, V., Lufita, M., Chandra, S., & Mostaghimi, J. (2003). Effect of substrate temperature on adhesion strength of plasma-sprayed nickel coatings. Journal of Thermal Spray Technology, 12, 370–376.

    Article  Google Scholar 

  19. Cedelle, J., Vardelle, M., & Fauchais, P. (2006). Influence of stainless steel substrate preheating on surface topography and on millimetre and micrometer sized splat formation. Surface and Coatings Technology, 201, 1373–1382.

    Article  Google Scholar 

  20. Li, C.-J., & Li, J.-L. (2004). Evaporated-gas-induced splashing model for splat formation during plasma spraying. Surface and Coatings Technology, 184, 13–23.

    Article  Google Scholar 

  21. Mehdizadeh, N. Z., Lamontagne, M., Moreau, C., Chandra, S., & Mostaghimi, J. (2005). Photographing impact of molten molybdenum particles in a plasma spray. Journal of Thermal Spray Technology, 14, 354–361.

    Article  Google Scholar 

  22. McDonald, A., Lamontagne, M., Moreau, C., & Chandra, S. (2006). Impact of plasma-sprayed metal particles on hot and cold glass surfaces. Thin Solid Films, 514, 212–222.

    Article  Google Scholar 

  23. Shakeri, S., & Chandra, S. (2002). Splashing of molten tin droplets on a rough steel surface. International Journal of Heat and Mass Transfer, 24, 4561–4575.

    Article  Google Scholar 

  24. Shinoda, K., Raessi, M., Mostaghimi, J., Yoshida, T., & Murakami, H. (2009). Effect of substrate concave pattern on splat formation of yttria-stabilized zirconia in atmospheric plasma spraying. Journal of Thermal Spray Technology, 18, 609–618.

    Article  Google Scholar 

  25. Mani, M., Mandre, S., & Brenner, M. P. (2009). Precursors to splashing of liquid droplets on a solid surface. Physical Review Letters, 102, 134502.

    Article  Google Scholar 

  26. Mani, M., Mandre, S., & Brenner, M. P. (2010). Events before droplet splashing on a solid surface. Journal of Fluid Mechanics, 647, 163–185.

    Article  Google Scholar 

  27. Mehdi-Nejad, V., Mostaghimi, J., & Chandra, S. (2003). Air bubble entrapment under an impacting droplet. Physics of Fluids, 15, 173–183.

    Article  Google Scholar 

  28. Xu, L., Zhang, W. W., & Nagel, S. R. (2005). Drop splashing on a dry smooth surface. Physical Review Letters, 94, 184505.

    Article  Google Scholar 

  29. Rioboo, R., Tropea, C., & Marengo, M. (2001). Outcomes from a drop impact on solid surfaces. Atomization and Sprays, 11, 155–165.

    Article  Google Scholar 

  30. Mundo, C., Sommerfeld, M., & Tropea, C. (1995). Droplet-wall collisions: experimental studies of the deformation and breakup process. International Journal of Multiphase Flow, 21, 151–173.

    Article  Google Scholar 

  31. Cossali, G. E., Coghe, A., & Marengo, M. (1997). The impact of a single drop on a wetted solid surface. Experiments in Fluids, 22, 463–472.

    Article  Google Scholar 

  32. Xu, L., Barcos, L., & Nagel, S. R. (2007). Splashing of liquids: Interplay of surface roughness with surrounding gas. Physical Review E, 76, 066311.

    Article  Google Scholar 

  33. Dhiman, R., McDonald, A., & Chandra, S. (2007). Predicting splat morphology in a thermal spray process. Surface and Coatings Technology, 201, 7789–8801.

    Article  Google Scholar 

  34. Fukanuma, H. (1994). A porosity formation and flattening model of an impinging molten particle in thermal spray coatings. Journal of Thermal Spray Technology, 3, 33–44.

    Article  Google Scholar 

  35. Cirolini, S., Harding, J. H., & Jacucci, G. (1991). Computer simulation of plasma-sprayed coatings – I. Coating deposition model. Surface and Coatings Technology, 48, 137–145.

    Article  Google Scholar 

  36. Xue, M., Chandra, S., & Mostaghimi, J. (2006). Investigation of splat curling up in thermal spray coatings. Journal of Thermal Spray Technology, 15, 531–536.

    Article  Google Scholar 

  37. Brackbill, J., Kothe, D., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100, 335–354.

    Article  Google Scholar 

  38. Kothe, D. B. (1998). Perspective on Eulerian finite volume methods for incompressible interfacial flows. In H. C. Kuhlmann & H. J. Rath (Eds.), Free surface flows (pp. 267–331). New York: Springer.

    Chapter  Google Scholar 

  39. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201–225.

    Article  Google Scholar 

  40. Osher, S., & Fedkiw, R. (2001). Level set methods: An overview and some recent results. Journal of Computational Physics, 169, 463–502.

    Article  Google Scholar 

  41. Afkhami, S., & Bussmann, M. (2008). Height functions for applying contact angles to 3D VOF simulations. International Journal of Numerical Methods in Fluids, 61, 827–847.

    Article  Google Scholar 

  42. Raessi, M., Mostaghimi, J., & Bussmann, M. (2007). Advecting normal vectors: A new method for calculating interface normal and curvatures when modeling two-phase flows. Journal of Computational Physics, 226, 774–797.

    Article  Google Scholar 

  43. Bussmann, M., Mostaghimi, J., & Chandra, S. (1999). On a three-dimensional volume tracking model of droplet impact. Physics of Fluids, 11, 1406–1417.

    Article  Google Scholar 

  44. Cao, Y., Faghri, A., & Chang, W. S. (1989). A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model. International Journal of Heat and Mass Transfer, 32, 1289–1298.

    Article  Google Scholar 

  45. M. Pasandideh-Fard (1998). Droplet impact and solidification in a thermal spray process. Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.

    Google Scholar 

  46. S. Alavi, M. Pasandideh-Fard, J. Mostaghimi (2012). Simulation of fluid flow and heat transfer including phase change during the impact of semi-molten particles. ASME 2012 Heat Transfer Summer Conference, Rio Grande, Puerto Rico, USA, July 8–12.

    Google Scholar 

  47. Ghafouri-Azar, R., Mostaghimi, J., & Chandra, S. (2004). Numerical study of solidification of a droplet over a deposited frozen splat. International Journal of Computational Fluid Dynamics, 18, 133–138.

    Article  Google Scholar 

  48. Pasandideh-Fard, M., Pershin, V., Chandra, S., & Mostaghimi, J. (2002). Splat shapes in a thermal spray coating process: Simulations and experiments. Journal of Thermal Spray Technology, 11, 206–217.

    Article  Google Scholar 

  49. M. Raessi, J. Mostaghimi, M. Bussmann (2005). Droplet impact during the plasma spray coating process – Effect of surface roughness on splat shapes. Proceedings of 17th international symposium on plasma chemistry, Toronto, Ontario, Canada, 916–917.

    Google Scholar 

  50. Parizi, H. B., Rosenzweig, L., Mostaghimi, J., Chandra, S., Coyle, T. W., Salimi, H., Pershin, L., McDonald, A., & Moreau, C. (2007). Numerical simulation of droplet impact on patterned surfaces. Journal of Thermal Spray Technology, 16, 713–721.

    Article  Google Scholar 

  51. Wu, T. C. M., Bussmann, M., & Mostaghimi, J. (2009). The impact of partially molten YSZ particle. Journal of Thermal Spray Technology, 18, 957–964.

    Article  Google Scholar 

  52. Alavi, S., Pasandideh-Fard, M., & Mostaghimi, J. (2012). Simulation of semi-molten particle impacts including heat transfer and phase change. Journal of Thermal Spray Technology, 21, 1278–1293.

    Article  Google Scholar 

  53. Amon, C. H., Schmaltz, K. S., & Prinz, F. B. (1996). Numerical and experimental investigation of interface bonding via substrate remelting of an impinging molten metal droplet. ASME Journal of Heat Transfer, 118, 164–172.

    Article  Google Scholar 

  54. Orme, M., & Huang, C. (1997). Phase change manipulation for droplet-based solid freeform fabrication. Transactions of the ASME, 119, 818–823.

    Article  Google Scholar 

  55. Fang, M., Chandra, S., & Park, C. B. (2007). Experiments on remelting and solidification of molten metal droplets deposited in vertical columns. ASME Journal of Manufacturing Science and Engineering, 129, 311–318.

    Article  Google Scholar 

  56. Fang, M., Chandra, S., & Park, C. B. (2009). Heat Transfer during deposition of molten aluminum alloy droplets to build vertical columns. Journal of Heat Transfer, 131 .paper 112101

    Google Scholar 

  57. Ghafouri-Azar, R., Shakeri, S., Chandra, S., & Mostaghimi, J. (2003). Interactions between molten metal droplets impinging on a solid surface. International Journal of Heat and Mass Transfer, 46, 1395–1407.

    Article  Google Scholar 

  58. Bergmann, D., Fritsching, U., & Bauckhage, K. (2000). A mathematical model for cooling and rapid solidification of molten metal droplets. International Journal of Thermal Sciences, 39, 53–62.

    Article  Google Scholar 

  59. Mathur, P., Apelian, D., & Lawley, A. (1989). Analysis of the spray deposition process. Acta Metallurgica, 31, 429–443.

    Article  Google Scholar 

  60. Bergmann, D., & Fritsching, U. (2004). Sequential thermal modelling of the spray-forming process. International Journal of Thermal Sciences, 43, 403–415.

    Article  Google Scholar 

  61. McPherson, R., & Shafer, B. V. (1982). Interlamellar contact within plasma-sprayed coatings. Thin Solid Films, 97, 201–204.

    Article  Google Scholar 

  62. Xue, M., Chandra, S., Mostaghimi, J., & Salimijazi, H. R. (2007). Formation of pores in thermal spray coatings due to incomplete filling of crevices in patterned surfaces. Plasma Chemistry and Plasma Processing, 27, 647–657.

    Article  Google Scholar 

  63. Cai, W. D., & Lavernia, E. J. (1997). Modeling of porosity during spray forming. Materials Science and Engineering, A226–228, 8–12.

    Article  Google Scholar 

  64. Ghafouri-Azar, R., Mostaghimi, J., Chandra, S., & Charmchi, M. (2003). A stochastic model to simulate the formation of a thermal spray coating. Journal of Thermal Spray Technology, 12, 54–69.

    Article  Google Scholar 

  65. Ghafouri-Azar, R., Mostaghimi, J., & Chandra, S. (2006). Development of residual stresses in thermal spray coatings. Computational Materials Science, 35, 13–26.

    Article  Google Scholar 

  66. Xue, M., Chandra, S., Mostaghimi, J., & Moreau, C. (2008). A stochastic model to predict the microstructure of plasma sprayed zirconia coatings. Modelling and Simulations in Material Science and Engineering, 16, 065006.

    Article  Google Scholar 

  67. Parizi, H. B., Mostaghimi, J., Pershin, L., & Jazi, H. S. (2010). Analysis of the microstructure of thermal spray coatings: A modeling approach. Journal of Thermal Spray Technology, 19, 736–744.

    Article  Google Scholar 

  68. Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and appications to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181, 375–389.

    Article  Google Scholar 

  69. Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82, 1013–1024.

    Article  Google Scholar 

  70. Liu, P. L. F., Yeh, H., & Costas, S. (Eds.). (2008). Advances in coastal and ocean engineering: Advanced numerical models for simulating tsunami waves and runup. Singapore: World Scientific Publishing 10.

    Google Scholar 

  71. B. Cartwright, P. H. L. Groenenboom, D. Mcguckin (2004). Examples of ship motions and wash predictions by smoothed particle hydrodynamics, 9th international symposium on the practical design of ships and other floating structures, Germany.

    Google Scholar 

  72. Hu, X., & Adams, N. (2006). A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics, 213, 844–861.

    Article  Google Scholar 

  73. Farrokhpanah, A., Samareh, B., & Mostaghimi, J. (2015). Applying contact angle to a two dimensional multiphase smoothed particle hydrodynamics model. Journal of Fluids Engineering, 137, 041303–041301.

    Article  Google Scholar 

  74. Monaghan, J. (2012). Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44, 323–346.

    Article  Google Scholar 

  75. Das, A. K., & Das, P. K. (2009). Simulation of drop movement over an inclined surface using smooth particle hydrodynamics. Langmuir, 25, 11459–11466.

    Article  Google Scholar 

  76. Das, A. K., & Das, P. K. (2010). Equilibrium shape and contact angle of sessile drops of different volumes – Computation by SPH and its further improvement by DI. Chemical Engineering Science, 65, 4027–4037.

    Article  Google Scholar 

  77. Kistler, S. F. (1993). The hydrodynamics of wetting. In J. C. Berg (Ed.), Wettability (pp. 311–429). New York: Marcel Dekke.

    Google Scholar 

  78. Å ikalo, Å ., Wilhelm, H. D., Roisman, I. V., Jakirli, S., & Tropea, C. (2005). Dynamic contact angle of spreading droplets: Experiments and simulations. Physics of Fluids, 17, 062103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chandra, S., Mostaghimi, J. (2017). Spray Impingement Fundamentals. In: Henein, H., Uhlenwinkel, V., Fritsching, U. (eds) Metal Sprays and Spray Deposition. Springer, Cham. https://doi.org/10.1007/978-3-319-52689-8_5

Download citation

Publish with us

Policies and ethics