Skip to main content

Spray Transport Fundamentals

  • Chapter
  • First Online:
Metal Sprays and Spray Deposition

Abstract

This chapter will present insights into the spray evolution and spray transport process during melt atomization and sprays based on multiphase flow analysis with momentum and energy transfer. Spray processes typically involve the liquid atomization stage and the multiphase phase flow within the spray. In the present example the spray consists of a two-phase flow with melt droplets and gas (metal melt atomization for powder production or spray forming) or even a three-phase flow of solid particles, melt droplets and gas (spray processing of metal-matrix-composites). The evolution of the spray depends on a series of physical phenomena involved initiated by bulk liquid disintegration (i.e. primary atomization), breakup of primary fragments like ligaments and droplets (i.e. secondary atomization), momentum and heat exchange between gas and melt, droplet solidification, droplet-droplet or particle-droplet collisions. The gas flow dynamics, especially in a twin-fluid atomization process, is an important topic here. The physics of atomization of liquid metal into dispersed phases and subsequent spray of those dispersed phases is mainly governed by very high and rapid momentum and heat transfer between the high speed atomization gas phase and the molten metal stream. A detailed introduction is given to the fundamentals of liquid atomization, in which the up-to-date understandings in liquid jet/sheet disintegration mechanism and droplet breakup mechanism, as well as the recent progress in melt atomization and spray process modelling, are presented. The research progress on the kinetic dynamics and thermal dynamics of dispersed phases in spray process, as well as the conclusions from the investigations of droplet-droplet or particle-droplet collision process will be given. At last, a multiscale description of particle-droplet interactions in spray processing of metal-matrix-composite (MMC) particles is described, and thereby the optimized operation condition and spray configuration for the maximum production efficiency of MMC particles in spray processes can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aydin, O., & Unal, R. (2011). Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior. Computers and Fluids, 42(1), 37–43.

    Article  Google Scholar 

  2. Czisch, C., Lohner, H., Fritsching, U., Bauckhage, K. (2003). Atomization of Highly Viscous Melts. Paper presented at 2nd international conference on spray deposition and melt atomization SDMA 2003, Bremen, Germany, 22–25 June 2003.

    Google Scholar 

  3. Czisch, C., & Fritsching, U. (2008). Flow-adapted design option for free-fall atomizers. Atomization and Sprays, 18, 511–522.

    Article  Google Scholar 

  4. Dielewicz, L.G., van Berg, E., Lampe, M. (1999). Computation of Transsonic Two-Phase Flow in Liquid Metal Jet Atomizers. Paper presented at ILASS-Europe 99, Toulouse, France, 5–7 July 1999.

    Google Scholar 

  5. Espina, P.I., Piomelli, U. (1998). Numerical simulation of the gas flow in gas metal atomizers. Paper presented at 1998 ASME fluids engineering division summer meeting: FEDSM'98, Washington, US, 21–25 June 1998.

    Google Scholar 

  6. Espina, P.I., Piomelli, U. (1998). Study of the gas jet in a close-coupled gas metal atomizer. AIAA, paper 98–0959.

    Google Scholar 

  7. Espina, P. I. (1999). Numerical simulation of atomization gas flow. In K. Bauckhage & V. Uhlenwinkel (Eds.), SFB 372: Sprühkompaktieren, Kolloquium, Band 4 (p. 127). Bremen: Universität Bremen.

    Google Scholar 

  8. Heck, U. (1998). Zur Zerstäubung in Freifalldüsen. Dissertation, Universität Bremen.

    Google Scholar 

  9. Mates, S. P., & Settles, G. S. (2005). A study of liquid metal atomization using close-coupled nozzles, part 1: Gas dynamic behavior. Atomization and Sprays, 15, 19–40.

    Article  Google Scholar 

  10. Mates, S. P., & Settles, G. S. (2005). A study of liquid metal atomization using close-coupled nozzles, part 2: Atomization behavior. Atomization and Sprays, 15, 41–60.

    Article  Google Scholar 

  11. Ting, J., Peretti, M. W., & Eisen, W. B. (2002). The effect of wake-closure phenomenon on gas atomization performance. Materials Science and Engineering A, 326, 110–121.

    Article  Google Scholar 

  12. Ting, J., & Anderson, I. E. (2004). A computational fluid dynamics (CFD) investigation of the wake closure phenomenon. Materials Science and Engineering A, 379, 264–276.

    Article  Google Scholar 

  13. Zeoli, N., & Gu, S. (2006). Numerical modelling of droplet break-up for gas atomisation. Computational Materials Science, 38, 282–292.

    Article  Google Scholar 

  14. Zeoli, N., & Gu, S. (2008). Computational validation of an isentropic plug nozzle design for gas atomisation. Computational Materials Science, 42, 245–258.

    Article  Google Scholar 

  15. Zeoli, N., Tabbara, H., & Gu, S. (2011). CFD modelling of primary breakup during metal powder atomization. Chemical Engineering Science, 66, 6498–6504.

    Article  Google Scholar 

  16. Anderson, I. E., & Figliola, R. S. (1988). Observations of gas atomization process dynamics. In P. U. Gummeson & D. A. Gustafson (Eds.), Modern developments in powder metallurgy (Vol. 20, p. 205). Princeton, NJ: Metal Powder Industries Federation.

    Google Scholar 

  17. Mullis, A. M., McCarthy, I. N., & Cochrane, R. F. (2011). High speed imaging of the flow during close-coupled gas atomisation: Effect of melt delivery nozzle geometry. Journal of Materials Processing Technology, 211(9), 1471–1477.

    Article  Google Scholar 

  18. Lohner, H., Czisch, C., Fritsching, U.. (2003) Impact of gas nozzle arrangement on the flow field of a twin fluid atomizer with external mixing. Paper presented at 9th international conference on liquid atomization and spray systems ICLASS 2003, Sorrento, Italy, 13–17 July 2003.

    Google Scholar 

  19. Ting, J. (2003). Melt flow rate in melt atomization. Paper presented at 2nd international conference on spray deposition and melt atomization SDMA 2003, Bremen, Germany, 22–25 June 2003.

    Google Scholar 

  20. Strauss, J.T. (2013). Lick back in close-coupled atomization: A phenomenological study. Paper presented at 5th international conference on spray deposition and melt atomization, SDMA 2013, Bremen, Germany, 23–25 September 2013.

    Google Scholar 

  21. Fritsching, U., & Bauckhage, K. (1992). Investigations on the atomization of molten metals: The coaxial jet and the gas flow in the nozzle near field. PHOENICS Journal of Computational Fluid Dynamics, 5(1), 81–98.

    Google Scholar 

  22. Markus, S., Fritsching, U., & Bauckhage, K. (2002). Jet break up of liquid metals. Materials Science and Engineering A, 326(1), 122–133.

    Article  Google Scholar 

  23. Bergmann, D., Fritsching, U., & Bauckhage, K. (2001). Simulation of molten metal droplet sprays. Journal of Computational Fluid Dynamics, 9, 203–211.

    Google Scholar 

  24. Fritsching, U. (2004). Spray simulation: Modeling and numerical simulation of sprayforming metals. Cambridge, NY: Cambridge University Press.

    Book  Google Scholar 

  25. Heck, U., Fritsching, U., & Bauckhage, K. (2000). Gas-flow effects on twin-fluid atomization of liquid metals. Atomization and Sprays, 10(1), 25–46.

    Article  Google Scholar 

  26. Wille, R., & Fernholz, H. (1965). Report on the first European mechanics colloquium on the Coanda effect. Journal of Fluid Mechanics, 23, 801–819.

    Article  Google Scholar 

  27. Farago, Z., & Chigier, N. (1992). Morphological classification of disintegration of round liquid jets in a coaxial air stream. Atomization and Sprays, 2, 137–153.

    Article  Google Scholar 

  28. Hopfinger, E. J. (1998). Liquid jet instability and the breakup process in liquid-liquid agitated atomization in a coaxial gas stream. Journal of Thermal Engineering Japan, 16(4), 313–319.

    Google Scholar 

  29. Adzic, M., Carvalho, I. S., & Heitor, M. V. (2001). Visualization of the disintegration of an annular liquid sheet in a coaxial air blast injector at low atomizing air velocities. Optical Diagnostics in Engineering, 5, 27–38.

    Google Scholar 

  30. Choi, C. J., Lee, S. Y., & Song, S. H. (1997). Disintegration of annular liquid sheet with core air flow—mode classification. International Journal of Fluid Mechanics Research, 24(1–3), 399–406.

    Google Scholar 

  31. Lavergne, G., Trichet, P., Hebrard, P., & Biscos, Y. (1993). Liquid sheet disintegration and atomization process on a simplified airblast atomizer. Journal of Engineering for Gas Turbines and Power, 115(3), 461–466.

    Article  Google Scholar 

  32. Sivakumar, D., & Kulkarni, V. (2011). Regimes of spray formation in gas-centered swirl coaxial atomizers. Experiments in Fluids, 51(3), 587–596.

    Article  Google Scholar 

  33. Achelis, L., Sulatycki, K., Uhlenwinkel, V., Mädler, L. (2010). Lamellenzerfall von Metallschmelzen im Düsenbereich eines Druck-Gas-Zerstäubers zur Erzeugung von Kompositpartikeln. Paper presented at Spray 2010, Heidelberg, Germany, 3–5 May 2010.

    Google Scholar 

  34. Uhlenwinkel, V., Achelis, L., Sulatycki, K., Mädler, L. (2010). New approach to generate composite particles. Paper presented at PMTEC 2010, Fort Lauderdale, USA, 27–30 June 2010.

    Google Scholar 

  35. Zeoli, N., Tabbara, H., & Gu, S. (2012). Three-dimensional simulation of primary break-up in a close-coupled atomizer. Applied Physics A: Materials Science & Processing, 108(4), 783–792.

    Article  Google Scholar 

  36. Desjardins, O., Moureau, V., & Pitsch, H. (2008). An accurate conservative level set/ghost fluid method for simulating turbulent atomization. Journal of Computational Physics, 227, 8395–8416.

    Article  Google Scholar 

  37. Gorokhovski, M., & Herrmann, M. (2008). Modeling primary atomization. Annual Review of Fluid Mechanics, 40, 343–366.

    Article  Google Scholar 

  38. Klein, M., Sadiki, A., Janicka, J. (2001). Influence of the inflow conditions on the direct numerical simulation of primary breakup of liquid jets. Paper presented at ILASS-Europe 2001, Zürich, Switzerland, 2–6 September 2001, 475–480.

    Google Scholar 

  39. Klein, M., Sadiki, A., Janicka, J. (2002). Untersuchung des Primärzerfalls eines Flüssigkeitsfilms: Vergleich direkte numerische simulation, experiment und lineare theorie. In: Spray 2002, 7th Workshop über Techniken der Fluidzerstäubung und Untersuchungen von Sprühvorgängen, TU-Bergakademie, Freiberg, 2002, 63–72.

    Google Scholar 

  40. Mayer, W. (1993). Zur koaxialen Flüssigkeitszerstäubung im Hinblick auf die Treibstoffaufbereitung in Raketentriebwerken. Dissertation, Universität Erlangen.

    Google Scholar 

  41. Menard, T., Tanguy, S., & Berlemont, A. (2007). Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. International Journal of Multiphase Flow, 33(5), 510–524.

    Article  Google Scholar 

  42. Scardovelli, R., & Zaleski, S. (1999). Direct Numerical Simulation of Free-surface and Interfacial Flow. Annual Review of Fluid Mechanics, 31, 567–603.

    Article  Google Scholar 

  43. Shinjo, J., & Umemura, A. (2010). Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36, 513–532.

    Article  Google Scholar 

  44. Zaleski, S., Li, J.. (1997). Direct simulation of spray formation. Paper presented at 7th international conference on liquid atomization and spray systems ICLASS 1997, Seoul, Korea, 18–22 August 1997.

    Google Scholar 

  45. Zaleski, S., Boeck, T. (2003). Direct numerical simulation of high speed jet atimization. Paper presented at 9th international conference on liquid atomization spraying systems ICLASS 2003, Sorrento, Italy, 13–17 July 2003.

    Google Scholar 

  46. Zhu, C. (2014). Numerical Investigation on the Instability and the Primary Breakup of Inelastic Non-Newtonian Liquid Jets. München: Dissertation, Universität Stuttgart, Verlag Dr Hut.

    Google Scholar 

  47. Ashgriz, N. (2011). Numerical techniques for simulating the atomization process. In N. Ashgriz (Ed.), Handbook of atomization and sprays. New York, NY: Springer.

    Chapter  Google Scholar 

  48. Fritsching, U., & Li, X. G. (2015). Spray systems. In E. E. Michaelides, J. D. Schwarzkopf, & C. Crowe (Eds.), Multiphase flow handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  49. Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modelling surface tension. Journal of Computational Physics, 100, 335–354.

    Article  Google Scholar 

  50. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., & Zaleski, S. (1999). Volume-of-fluid interface tracking with smoothed surface stress methods for three dimensional flows. Journal of Computational Physics, 152, 423–456.

    Article  Google Scholar 

  51. Lafaurie, B., Nardonne, C., Scardovelli, R., Zaleski, S., & Zanetti, G. (1994). Modeling merging and fragmentation in multiphase flows with SURFER. Journal of Computational Physics, 113, 134–147.

    Article  Google Scholar 

  52. Hong, J. M., Shinar, T., Kang, M., & Fedkiw, R. (2007). On boundary condition capturing for multiphase interfaces. Journal of Scientific Computing, 31, 99–125.

    Article  Google Scholar 

  53. Kang, M., Fedkiw, R., & Liu, X. D. (2000). A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing, 15, 323–360.

    Article  Google Scholar 

  54. Tanguy, S., & Berlemont, A. (2005). Application of a level set method for simulation of droplet collisions. International Journal of Multiphase Flow, 31, 1015–1035.

    Article  Google Scholar 

  55. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201–225.

    Article  Google Scholar 

  56. Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 12–49.

    Article  Google Scholar 

  57. Osher, S., & Fedkiw, R. (2002). Level set methods and dynamic implicit surfaces. In S. S. Antman, J. E. Marsden, & L. Sirovich (Eds.), Appl Math Sci (Vol. Vol 153). New York, NY: Springer.

    Google Scholar 

  58. Gopala, V. R., & van Wachem, B. G. M. (2008). Volume of fluid methods for immiscible-fluid and free-surface flows. Chemical Engineering Journal, 141, 204–221.

    Article  Google Scholar 

  59. van Wachem, B. G. M., & Schouten, J. C. (2002). Experimental validation of 3-d Lagrangian VOF model: Bubble shape and rise velocity. AIChE Journal, 48(12), 2744–2753.

    Article  Google Scholar 

  60. Zaleski, S., Li, J., Succi, S., Scardovelli, R., Zanetti, G.. (1995). Direct numerical simulation of flows with interfaces. Paper presented at 2nd international conference on multiphase flow, Kyoto, Japan, April 1995.

    Google Scholar 

  61. Wardle, K. E., & Weller, H. G. (2013). Hybrid multiphase CFD solver for coupled dispersed/segregated flows in liquid-liquid extraction. International Journal of Chemical Engineering, 2013, 1–13.

    Article  Google Scholar 

  62. Herrmann, M. (2008). A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. Journal of Computational Physics, 227(4), 2674–2706.

    Article  Google Scholar 

  63. Van der Pijl, S. P., Segal, A., Vuik, C., & Wesseling, P. (2005). A mass-conserving level-set method for modeling of multiphase flows. International Journal for Numerical Methods in Fluids, 47, 339–361.

    Article  Google Scholar 

  64. Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35, 247–260.

    Article  Google Scholar 

  65. Li, X. G. (2014). Modeling and simulation of the gas-atomization process of metal melts for metal-matrix-composite production. Aachen: Dissertation, Universität Bremen, Shaker-Verlag.

    Google Scholar 

  66. Li, X.G., & Fritsching, U. (2017). Process Modeling Pressure-Swirl-Gas-Atomization for Metal Powder Production. Journal of Materials Processing Technology, 239, 1–17.

    Google Scholar 

  67. Li, X. G., & Fritsching, U. (2014). Numerical investigation of solid particle penetration into liquid droplet. Materialwissenschaft und Werkstofftechnik, 45(8), 666–682.

    Article  Google Scholar 

  68. Park, J., Huh, K. Y., Li, X. G., & Renksizbulut, M. (2004). Experimental investigation on cellular breakup of a planar liquid sheet from an air-blast nozzle. Physics of Fluids, 16(3), 625–632.

    Article  Google Scholar 

  69. Wahono, S., Honnery, D., Soria, J., & Ghojel, J. (2008). High-speed visualisation of primary break-up of an annular liquid sheet. Experiments in Fluids, 44(3), 451–459.

    Article  Google Scholar 

  70. Grosshans, H., Szasz, R. Z., & Fuchs, L. (2014). Development of an efficient statistical volumes of fluid-Lagrangian particle tracking coupling method. International Journal for Numerical Methods in Fluids, 74, 898–918.

    Article  Google Scholar 

  71. Herrmann, M. (2010). A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure. Journal of Computational Physics, 229, 745–759.

    Article  Google Scholar 

  72. Tomar, G., Fuster, D., Zaleski, S., & Popinet, S. (2010). Multiscale simulations of primary atomization. Computers and Fluids, 39, 1864–1874.

    Article  Google Scholar 

  73. Bergmann, D., Fritsching, U., & Bauckhage, K. (2000). A mathematical model for cooling and rapid solidification of molten metal droplets. International Journal of Thermal Sciences, 39, 53–62.

    Article  Google Scholar 

  74. Chryssakis, C., & Assanis, D. N. (2008). A unified fuel spray breakup model for internal combustion engine applications. Atomization and Sprays, 18, 1–52.

    Article  Google Scholar 

  75. Faeth, G. M., Hsiang, L. P., & Wu, P. K. (1995). Structure and breakup properties of spray. International Journal of Multiphase Flow, 21, 99–127.

    Article  Google Scholar 

  76. Guildenbecher, D. R., Lopez-Rivera, C., & Sojka, P. E. (2009). Secondary atomization. Experiments in Fluids, 46(3), 371–402.

    Article  Google Scholar 

  77. Pilch, M., & Erdmann, C. A. (1987). Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International Journal of Multiphase Flow, 13, 741–757.

    Article  Google Scholar 

  78. Cao, X. K., Sun, Z. G., Li, W. F., Liu, H. F., & Yu, Z. H. (2007). A new breakup regime for liquid drops identified in a continuous and uniform air jet flow. Physics of Fluids, 19(5), 057103.

    Article  Google Scholar 

  79. Zhao, H., Liu, H. F., Li, W. F., & Xu, J. L. (2010). Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Physics of Fluids, 22(11), 114103.

    Article  Google Scholar 

  80. Hsiang, L. P., & Faeth, G. M. (1992). Near-limit drop deformation and secondary breakup. International Journal of Multiphase Flow, 18(5), 635–652.

    Article  Google Scholar 

  81. Hsiang, L. P., & Faeth, G. M. (1993). Drop Properties after secondary breakup. International Journal of Multiphase Flow, 19(5), 721–735.

    Article  Google Scholar 

  82. Markus, S., Fritsching, U. (2003). Spray forming with multiple atomization. Paper presented at 2nd international conference on spray deposition and melt atomization SDMA 2003, Bremen, Germany, 22–25 June 2003.

    Google Scholar 

  83. O’Rourke, P.J., Amsden, A.A. (1987). The TAB method for numerical calculation of spray droplet breakup. Los Alamos National Laboratory Report LA-UR-87-2105.

    Google Scholar 

  84. Tanner, F.X. (1997). Liquid jet atomization and droplet breakup modeling of non-evaporating diesel fuel sprays. SAE paper 970050.

    Google Scholar 

  85. Tanner, F. X. (2004). Development and validation of a cascade atomization and drop breakup model for high-velocity dense sprays. Atomization and Sprays, 14(3), 211–242.

    Article  Google Scholar 

  86. Reitz, R.D., Diwarkar, R. (1987). Structure of high pressure fuel sprays. SAE paper 870598.

    Google Scholar 

  87. Reitz, R. D. (1987). Modeling atomization processes in high-pressure vaporizing sprays. Atomisation and Spray Technology, 3, 309–337.

    Google Scholar 

  88. Patterson, M.A., Reitz, R.D. (1998). Modeling the effects of fuel spray characteristics on diesel engine combustion and emissions. SAE paper 980131.

    Google Scholar 

  89. Beale, J. C., & Reitz, R. D. (1999). Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. Atomization and Sprays, 9, 623–650.

    Article  Google Scholar 

  90. Schmehl, R. (2004). Tropfendeformation und Nachzerfall bei der technischen Gemischaufbereitung. Germany: Dissertation, Universität Karlsruhe.

    Google Scholar 

  91. Bartz, F.O., Schmehl, R., Koch, R., Bauer, H.J. (2010). An extension of dynamic droplet deformation models to secondary atomization. Paper presented at ILASS-Europe 2010, Brno, Czech, 6–8 September 2010.

    Google Scholar 

  92. Schmehl, R. (2002). Advanced modeling of droplet deformation and breakup for CFD analysis of mixture preparation. Paper presented at ILASS-Europe 2002, Zaragoza, Spain, 9–11 September 2002.

    Google Scholar 

  93. Chou, W. H., Hsiang, L. P., & Faeth, G. M. (1997). Temporal properties of drop breakup in the shear breakup regime. International Journal of Multiphase Flow, 23(4), 651–669.

    Article  Google Scholar 

  94. Chou, W. H., & Faeth, G. M. (1998). Temporal properties of drop breakup in the bag breakup regime. International Journal of Multiphase Flow, 24(6), 889–912.

    Article  Google Scholar 

  95. Dai, Z., & Faeth, G. M. (2001). Temporal properties of secondary drop breakup in the multimode breakup regime. International Journal of Multiphase Flow, 27(2), 217–236.

    Article  Google Scholar 

  96. Bartz, F.O., Guildenbecher, D.R., Schmehl, R., Koch, R., Bauer, H.J., Sojka, P.E. (2011). Model comparison for single droplet fragmentation under varying accelerations. Paper presented at ILASS-Europe 2011, Estoril, Portugal, 5–7 September 2011.

    Google Scholar 

  97. Schmehl, R. (2000). CFD analysis of fuel atomization, secondary droplet breakup and spray dispersion in the premix duct of a LPP combustor. Paper presented at 8th international conference on liquid atomization and spray systems ICLASS 2000, Pasadena, CA, 16–20 July 2000.

    Google Scholar 

  98. Sellens, R. W. (1989). Prediction of the drop size and velocity distribution in a spray based on the maximum entropy formalism. Particle and Particle Systems Characterization, 6, 17–23.

    Article  Google Scholar 

  99. Sellens, R. W., & Brzustowski, T. A. (1985). A prediction of the drop size distribution in a spray from first principles. Atomization and Spray Technology, 1, 89–102.

    Google Scholar 

  100. Li, X., & Tankin, R. S. (1987). Droplet size distribution: A derivation of Nukyama-Tanasawa type distribution function. Combustion Science and Technology, 56, 65–76.

    Article  Google Scholar 

  101. Cousin, J., & Dumouchel, C. (1996). Effect of viscosity on the linear instability of a liquid sheet. Atomization and Sprays, 6, 563–576.

    Article  Google Scholar 

  102. Kim, W. T., Mitra, S. K., Li, X., Prociw, L. A., & Hu, T. C. J. (2003). A predictive model for the initial droplet size and velocity distributions in sprays and comparison with experiments. Particle and Particle Systems Characterization, 20, 135–149.

    Article  Google Scholar 

  103. Li, X., Li, M., & Fu, H. (2005). Modeling the initial droplet size distribution in sprays based on the maximization of entropy generation. Atomization and Sprays, 15, 295–321.

    Article  Google Scholar 

  104. Dumouchel, C. (2006). A new formulation of the maximum entropy formalism to model liquid spray dropsize distribution. Particle and Particle Systems Characterization, 23, 468–479.

    Article  Google Scholar 

  105. Hosseinalipour, S. M., & Karimaei, H. (2016). A new model based on coupling of MEP/CFD/ILIA for predition of primary atomization. The Canadian Journal of Chemical Engineering, 94, 792–799.

    Article  Google Scholar 

  106. Platzer, E., Sommerfeld, M. (2003). Modelling of turbulent atomisation with an Euler/Euler approach including the drop size prediction. Paper presented at 9th international conference on liquid atomization spray systems ICLASS 2003, Sorrento, Italy, 13–17 July 2003.

    Google Scholar 

  107. Naue, G., & Bärwolf, G. (1992). Transportprozesse in Fluiden. Leipzig: Deutscher Verlag für Grundstoffindustrie.

    Google Scholar 

  108. Hartmann, D. (1993). Theoretische Untersuchungen zur Tropfenbildung bei Dispergierprozessen. Dissertation Martin-Luther-Universität Halle.

    Google Scholar 

  109. Lubanska, H. (1970). Correlation of spray ring data for gas atomization of liquid droplets. Journal of Metals, 2, 45–49.

    Google Scholar 

  110. Rao, K. P., & Mehrotra, S. P. (1980). Effect of process variables on atomization of metals and alloys. In H. H. Hausner, H. W. Antes, & G. D. Smith (Eds.), Modern developments in powder metallurgy: Principles and processes (pp. 113–130). Princeton, NJ: MPIF and APMI International.

    Google Scholar 

  111. Rai, G., Lavernia, E. J., & Grant, N. J. (1985). Factors influencing the powder size and distribution in ultrasonic gas atomization. Journal of Metals, 37(8), 22–26.

    Google Scholar 

  112. Bauckhage, K., & Fritsching, U. (2000). Production of metal powders by gas atomization. In K. P. Cooper, I. E. Anderson, S. D. Ridder, & F. S. Biancanello (Eds.), Liquid metal atomization: Fundamentals and practice (pp. 23–36). Warrendale, PA: TMS.

    Google Scholar 

  113. Liu, H. (2000). Science and engineering of droplets: Fundamentals and applications. Norwich, CT: William Andrew Publishing.

    Google Scholar 

  114. Yule, A. J., & Dunkley, J. J. (1994). Atomization of melts. Oxford: Clarendon Press.

    Google Scholar 

  115. Orme, M. (1997). Experiments on droplet collision, bounce coalescence and disruption. Progress in Energy and Combustion Science, 23, 65–79.

    Article  Google Scholar 

  116. Ashgriz, N., & Poo, J. Y. (1990). Coalescence and separation in binary collision of liquid drops. Journal of Fluid Mechanics, 221, 183–204.

    Article  Google Scholar 

  117. Qian, J., & Law, C. K. (1997). Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 331, 59–80.

    Article  Google Scholar 

  118. Menchaca-Rocha, A., Huidobro, F., Martinez-Davalos, A., Michaelian, K., Perez, A., Rodriguez, V., & Carjan, N. (1997). Coalescence and fragmentation of colliding mercury drops. Journal of Fluid Mechanics, 346, 291–318.

    Article  Google Scholar 

  119. Kuschel, M., & Sommerfeld, M. (2013). Investigation of droplet collisions for solutions with different solids content. Experiments in Fluids, 54(1440), 1–17.

    Google Scholar 

  120. Kurt, O., Fritsching, U., Schulte, G. (2007). Binary collisions of droplets with fluid and suspension particles. Paper presented at ILASS-Europe 2007, Mugla, Turkey, 10–13 September 2007.

    Google Scholar 

  121. Kurt, O., Fritsching, U., Schulte, G. (2008). Secondary droplet formation during binary suspension droplet collisions. Paper presented at ILASS-Europe 2008, Como Lake, Italy, 8–10 September 2008.

    Google Scholar 

  122. Gao, S., & Fritsching, U. (2010). Study of binary in-flight melt droplet collisions. Materialwissenschaft und Werkstofftechnik, 41(7), 547–554.

    Article  Google Scholar 

  123. Brenn, G., Valkovska, D., & Danov, K. D. (2001). The formation of satellite droplets by unstable binary drop collisions. Physics of Fluids, 13(9), 2463–2477.

    Article  Google Scholar 

  124. Brenn, G., & Kolobaric, V. (2006). Satellite droplet formation by unstable binary drop collisions. Physics of Fluids, 18, 087101-1–087101-18.

    Article  Google Scholar 

  125. Fritsching, U., & Gao, S. (2010). Droplet-particle collisions in intersecting melt sprays. Atomization and Sprays, 20(1), 31–40.

    Article  Google Scholar 

  126. Nobari, M. R. H., & Tryggvason, G. (1996). Numerical simulations of three-dimensional drop collisions. AIAA Journal, 34, 750–755.

    Article  Google Scholar 

  127. Nobari, M. R. H., Jan, Y. J., & Tryggvason, G. (1996). Head-on collision of drops—A numerical investigation. Physics of Fluids, 8, 29–42.

    Article  Google Scholar 

  128. Frohn, A., & Roth, N. (2000). Dynamics of droplets. Berlin: Springer.

    Book  Google Scholar 

  129. Pan, Y., & Suga, K. (2005). Numerical simulation of binary liquid droplet collision. Physics of Fluids, 17, 082105.

    Article  Google Scholar 

  130. Nikolopoulos, N., Nikas, K. S., & Bergeles, G. (2009). A numerical investigation of central binary collision of droplets. Computers and Fluids, 38, 1191–1202.

    Article  Google Scholar 

  131. Nikolopoulos, N., Theodorakakos, A., & Bergeles, G. (2009). Off-centre binary collision of droplets: A numerical investigation. International Journal of Heat and Mass Transfer, 52, 4160–4174.

    Article  Google Scholar 

  132. Li, X.G., & Fritsching, U. (2011). Numerical investigation of binary droplet collisions in all relevant collision regimes. J. Comput. Multiphase Flows, 3(4), 207–224.

    Article  Google Scholar 

  133. Focke, C., & Bothe, D. (2011). Computational analysis of binary collisions of shear thinning droplets. Journal of Non-Newtonian Fluid Mechanics, 166, 799–810.

    Article  Google Scholar 

  134. Focke, C., & Bothe, D. (2012). Direct numerical simulation of binary off-center collisions of shear thinning droplets at high Weber numbers. Physics of Fluids, 24, 073105-1–073105-18.

    Article  Google Scholar 

  135. Kwakkel, M., Breugem, W. P., & Boersma, B. J. (2013). Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model. Journal of Computational Physics, 253, 166–188.

    Article  Google Scholar 

  136. Mackay, G. D., & Mason, S. G. (1963). The gravity approach and coalescence of fluid drops at liquid interfaces. Canadian Journal of Chemical Engineering, 41, 203–212.

    Article  Google Scholar 

  137. Bradley, S. G., & Stow, C. D. (1978). Collision between liquid drops. Philosophical Transactions of the Royal Society of London, Series A, 287, 635–675.

    Article  Google Scholar 

  138. Zhang, P., & Law, C. K. (2011). An analysis of head-on droplet collision with large deformation in gaseous medium. Physics of Fluids, 23, 042102-1–042102-22.

    Google Scholar 

  139. Sommerfeld, M. (1996). Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange Verfahrens. Aachen: Verlag Shaker.

    Google Scholar 

  140. Georjon, T. L., & Reitz, R. D. (1999). A drop-shattering collision model for multidimensional spray computations. Atomization and Sprays, 9, 231–254.

    Article  Google Scholar 

  141. Aamir, M.A., Watkins, A.P. (1999). Dense propane spray analysis with a modified collision model. Paper presented at ILASS-Europe 99, Toulouse, France, 5–7 July 1999.

    Google Scholar 

  142. Rüger, M., Hohmann, S., Sommerfeld, M., & Kohnen, G. (2000). Euler/Lagrange calculations of turbulent spray: the effect of droplet collisions and coalescence. Atomization and Sprays, 10(1), 47–82.

    Article  Google Scholar 

  143. O’Rourke PJ (1981). Collective drop effects on vaporizing liquid sprays. Dissertation, Los Alamos National Laboratory, New Mexico.

    Google Scholar 

  144. Amsden, A.A., O’Rourke, P.J., Butler, T.D. (1989). KIVA-II: A computer program for chemically reactive flows with sprays. Los Alamos National Laboratory Report LA-11560-MS.

    Google Scholar 

  145. Dubrovsky, V. V., Podvysotsky, A. M., & Shraiber, A. A. (1992). Particle interaction in three-phase polydispersed flows. International Journal of Multiphase Flow, 18(3), 337–352.

    Article  Google Scholar 

  146. Crowe, C. T., Sharma, M. P., & Stock, D. E. (1977). The particle-source-in-cell method for gas droplet flow. Journal of Fluids Engineering, 99, 325–332.

    Article  Google Scholar 

  147. Sommerfeld, M., & Zivkovic, G. (1992). Resent advances in the numerical simulation of pneumatic conveying through pipe systems. In H. Hirch et al. (Eds.), Computational methods in applied science. Brussels: First European Computational Fluid Dynamics.

    Google Scholar 

  148. Sommerfeld, M., Kohnen, G., Rüger, M. (1993). Some open question and inconsistencies of Lagrangian particle dispersion models. Paper presented at the 9th symposium on turbulent shear flows, Kyoto, Japan, 16–18 August 1993.

    Google Scholar 

  149. Sommerfeld, M. (1995). The importance of inter-particle collisions in horizontal gas-solid channel flows. In D. E. Stock et al. (Eds.), ASME fluids engineering conference, FED-288 (pp. 333–345). Hilton Head, SC: ASME.

    Google Scholar 

  150. Osterle, B., & Petijean, A. (1993). Simulation of particle-to-particle interaction in gas-solid flows. International Journal of Multiphase Flow, 9(19), 199–211.

    Article  Google Scholar 

  151. Schmidt, D. P., & Rutland, C. J. (2000). A new droplet collision algorithm. Journal of Computational Physics, 164, 62–80.

    Article  Google Scholar 

  152. Schmidt, D. P., & Rutland, C. J. (2004). Reducing grid dependency in droplet collision modeling. Journal of Engineering for Gas Turbines and Power, 126, 227–233.

    Article  Google Scholar 

  153. Bauman SD (2001). A spray model for an adaptive mesh refinement code. Dissertation, Madison University Wiconsin.

    Google Scholar 

  154. Sommerfeld, M. (2001). Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. International Journal of Multiphase Flow, 27, 1829–1858.

    Article  Google Scholar 

  155. Pischke, P., Cordes, D., & Kneer, R. (2012). A collision algorithm for anisotropic disperse flows based on ellipsoidal parcel representations. International Journal of Multiphase Flow, 38, 1–16.

    Article  Google Scholar 

  156. Pischke, P., Cordes, D., & Kneer, R. (2012). The velocity decomposition method for second-order accuracy in stochastic parcel simulations. International Journal of Multiphase Flow, 47, 160–170.

    Article  Google Scholar 

  157. Pischke, P. (2014). Modeling of collisional transport processes in spray dynamics. Dissertation, RWTH Aachen Univeristy.

    Google Scholar 

  158. Lampa, A., & Fritsching, U. (2013). Large eddy simulation of the spray formation in confinements. International Journal of Heat and Fluid Flow, 43, 26–34.

    Article  Google Scholar 

  159. Lampa, A., & Fritsching, U. (2011). Spray Structure analysis in atomization processes in enclosures for powder production. Atomization and Sprays, 21(9), 737–752.

    Article  Google Scholar 

  160. Bergmann, D., Fritsching, U., Crowe, C.T. (1995). Multiphase flows in the spray forming process. Paper presented at 2nd international conference on multiphase flow, Kyoto, Japan, 3–7 April 1995.

    Google Scholar 

  161. Marx, K. D., Edwards, C. F., & Chin, W. K. (1994). Limitations of the ideal Phase-Doppler system: Extension to spatially and temporally inhomogeneous particle flows. Atomization and Sprays, 4, 1–40.

    Article  Google Scholar 

  162. Edwards, C. F., & Marx, K. D. (1995). Multipoint statistical structure of the ideal spray, Part I: Fundamental concepts and the realization density. Atomization and Sprays, 5, 435–455.

    Article  Google Scholar 

  163. Edwards, C. F., & Marx, K. D. (1995). Multipoint statistical structure of the ideal spray, Part II: Evaluating steadiness using the interparticle time distribution. Atomization and Sprays, 5, 457–505.

    Article  Google Scholar 

  164. Heinlein, J., & Fritsching, U. (2006). Droplet clustering in sprays. Experiments in Fluids, 40, 464–472.

    Article  Google Scholar 

  165. Czainski, A. (1994). Quantitive characterization of inhomogeneity in thin metallic films using Garncarek’s method. Journal of Physics D: Applied Physics, 27, 616–622.

    Article  Google Scholar 

  166. Yang, R. Y., Zou, R. P., & Yu, A. B. (2002). Voronoi tessellation of the packing of fine uniform spheres. Physical Review E, 65, 041302.

    Article  Google Scholar 

  167. Jedelsky, J., & Jicha, M. (2008). Unsteadiness in effervescent sprays: A new evaluation method and the influence of operational conditions. Atomization and Sprays, 18(1), 49–83.

    Article  Google Scholar 

  168. Markus, S., & Fritsching, U. (2006). Discrete breakup modeling for melt sprays. International Journal of Powder Metallurgy, 42(4), 23–32.

    Google Scholar 

  169. Apte, S. V., Gorokhovski, M. A., & Moin, P. (2003). LES of atomizing spray with stochastic modeling of secondary breakup. International Journal of Multiphase Flow, 29, 1503–1522.

    Article  Google Scholar 

  170. Bellan, J. (2000). Perspectives on large eddy simulations for sprays: Issues and solutions. Atomization and Sprays, 10, 409–425.

    Article  Google Scholar 

  171. Irannejad, A., & Jaberi, F. (2014). Large eddy simulation of turbulent spray breakup and evaporation. International Journal of Multiphase Flow, 61, 108–128.

    Article  Google Scholar 

  172. Jones, W. P., & Lettieri, C. (2010). Large eddy simulation of spray atomization with stochastic modeling of breakup. Physics of Fluids, 22, 115106-1–115106-12.

    Article  Google Scholar 

  173. Lampa, A., Fritsching, U. (2014). Impact of droplet clustering on heat transfer in spray processes. Proceedings ILASS 2014—26th European conference on liquid atomization and spray systems, Bremen, Germany, 8–10 Sep. 2014.

    Google Scholar 

  174. Gorokhovski, M. A., & Saveliev, V. L. (2003). Analyses of Kolmogorovs model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization. Physics of Fluids, 15, 184–192.

    Article  Google Scholar 

  175. Lasheras, J. C., Eastwood, C., Martinez-Bazan, C., & Montanes, J. L. (2002). A review of statistical models for the breakup of an immiscible fluid immersed into a fully developed turbulent flow. International Journal of Multiphase Flow, 28, 247–278.

    Article  Google Scholar 

  176. Wiegand, H. (1987). Die Einwirkung eines ebenen Strömungsfelds auf frei bewegliche Tropfen und ihren Widerstandsbeiwert im Reynoldszahlenbereich von 50 bis 2000. Fortschrittberichte VDI 7(120). Düsseldorf: VDI-Verlag.

    Google Scholar 

  177. Liu, A.B., Mather, D., Reitz, R.D.. (1993) Modeling the effect of drop drag and breakup on fuel sprays. SAE Technical Paper 930072.

    Google Scholar 

  178. Fritsching, U., & Bauckhage, K. (1987). Die Bewegung von Tropfen im Sprühkegel einer Ein- und einer Zweistoffdüse. Chemie Ingenieur Technik, 59(9), 744–745.

    Article  Google Scholar 

  179. Schulte, G. (1995). Zweidimensionale Verteilunen von Partikeleigenschaften. Aachen: Shaker Verlag.

    Google Scholar 

  180. Ranz, W. E., & Marshall, W. R. (1952). Evaporation from Drops-I and II. Chemical Engineering Progress, 48, 141–173.

    Google Scholar 

  181. Yearling, P. R., & Gould, R. D. (1995). Convective heat and mass transfer from single evaporating water, methanol and ethanol droplets. ASME FED, 223, 33–38.

    Google Scholar 

  182. Lavernia, E. J., & Wu, Y. (1996). Spray Atomization and Deposition. Chichester: J Wiley & Sons.

    Google Scholar 

  183. Lavernia, E. J. (1996). Spray atomization and deposition of metal matrix composites. In K. Bauckhage & V. Uhlenwinkel (Eds.), Kolloquium des SFB 372, Sprühkompaktieren (Vol. 1, pp. 63–122). Bremen: Universität Bremen.

    Google Scholar 

  184. Hirth, J. P. (1978). Nucleation, undercooling and homogeneous structures in rapidly solidified powders. Metallurgical Transactions A, 9(3), 401–404.

    Article  Google Scholar 

  185. Libera, M., Olsen, G. B., & van der Sande, J. B. (1991). Heterogeneous nucleation of solidification in atomized liquid metal droplets. Materials Science and Engineering A, 132, 107–118.

    Article  Google Scholar 

  186. Turnbull, D. (1950). Formation of crystal nuclei in liquid metals. Journal of Applied Physics, 21, 1022–1028.

    Article  Google Scholar 

  187. Woodruff, D. P. (1973). The solid-liquid interface. Cambridge: Cambridge University Press.

    Google Scholar 

  188. Mathur, P., Apelian, D., & Lawley, A. (1989). Analysis of the spray deposition process. Acta Metallurgica, 37(2), 429–443.

    Article  Google Scholar 

  189. Mathur, P., Annavarapu, S., Apelian, D., & Lawley, A. (1989). Process control, modeling and applications of spray casting. Journal of Metals, 10, 23–28.

    Google Scholar 

  190. Lee, E., & Ahn, S. (1994). Solidification progress and heat transfer analysis of gas atomized alloy droplets during spray forming. Acta Metallurgica et Materialia, 42(9), 3231–3243.

    Article  Google Scholar 

  191. Bergmann D (2000). Modellierung des Sprühkompaktierprozesses für Kupfer- und Stahlwerkstoffe. Dissertation, Universität Bremen.

    Google Scholar 

  192. Pedersen, T.P., Hattel, J.H., Pryds, N.H., Pedersen, A.S., Buchholz, M., Uhlenwinkel, V. (2000). A new integrated numerical model for spray atomization and deposition: Comparison between numerical results and experiments. Paper presented at SDMA 2000, Bremen, Germany, 26–28 June 2000 (pp. 813–824).

    Google Scholar 

  193. Gjesing, R., Hattel, J., & Fritsching, U. (2009). Coupled atomization and spray modelling in the spray forming process using open foam. Engineering Applications of Computational Fluid Mechanics, 3(4), 471–486.

    Article  Google Scholar 

  194. Fritsching, U. (1995). Modelling the spray cone behaviour in the metal spray forming process: Momentum and thermal coupling in two-phase flow. PHOENICS Journal of Computational Fluid Dynamics, 8(1), 68–90.

    Google Scholar 

  195. Grant, P. S., Cantor, B., & Katgerman, L. (1993). Modelling of droplet dynamic and thermal histories during spray forming-I: Individual droplet behaviour. Acta Metallurgica et Materialia, 41(11), 3097–3108.

    Article  Google Scholar 

  196. Grant, P. S., Cantor, B., & Katgerman, L. (1993). Modelling of droplet dynamic and thermal histories during spray forming-II: Effect of process parameters. Acta Metallurgica et Materialia, 41(11), 3109–3118.

    Article  Google Scholar 

  197. Pedersen, T.B. (2003). Spray forming-a new integrated numerical model. Dissertation, Technical University of Denmark.

    Google Scholar 

  198. Ziesenis, J. (2003). Weiterentwicklung der PDA-Meßtechnik zur on-line Prozeßkontrolle beim Sprühkompaktieren. Dissertation, Universität Bremen.

    Google Scholar 

  199. Bauckhage, K. (1998). Use of the phase-doppler-anemometry for the analysis and the control of the spray forming process. Paper presented at PM 2 TEC´98, Las Vegas, USA, 31 May–4 June, 1998.

    Google Scholar 

  200. Delshad Khatibi, P., Ilbagi, A., Beinker, D., & Henein, H. (2011). In-situ characterization of droplets during free fall in the drop tube-impulse system. Journal of Physics: Conference Series, 327, 012014.

    Google Scholar 

  201. Delshad Khatibi, P., & Henein, H. (2014). The robustness of the two-colour assumption in pyrometry of solidifying AISI D2 alloy droplets. Materialwissenschaft und Werkstofftechnik, 45(8), 736–743.

    Article  Google Scholar 

  202. Krauss, M., Bergmann, D., & Fritsching, U. (2002). In-situ particle temperature, velocity and size measurements in the spray forming process. Materials Science and Engineering A, 326(1), 154–164.

    Article  Google Scholar 

  203. Bergmann, D., Fritsching, U., Bauckhage, K. (1999). Averaging thermal conditions in molten metal sprays. Paper presented at TMS-Annual Meeting, EPD Congress, San Diego, USA, February 28–March 4.

    Google Scholar 

  204. Uhlenwinkel, V. (1992). Zum Ausbreitungsverhalten der Partikeln bei der Sprühkompaktierung von Metallen. Dissertation, Universität Bremen.

    Google Scholar 

  205. Kramer, C. (1997). Die Kompaktierungsrate beim Sprühkompaktieren von Gauß-förmigen Deposits. Dissertation, Universität Bremen.

    Google Scholar 

  206. Achelis L (2009). Drall-Druck-Gas-Zerstäubung von Metallschmelzen, Dissertation, Universität Bremen, Shaker-Verlag, Aachen.

    Google Scholar 

  207. Mulhem, B., Khoja, G., Fritsching, U., Schulte, G. (2006). Break-up of hollow cone and flat suspension lamellae of pressure atomizers. Paper presented at ICLASS 2006, Kyoto, Japan, 27 August–1 September 2006.

    Google Scholar 

  208. Musemic, E., Gaspar, M., Weichert, F., Müller, H., Walzel, P. (2010). Experimental examination of the liquid sheet disintegration process using combined photography and fibre based measuring techniques. Paper presented at ILASS-Europe 2010, Brno, Czech Republic, 6–8 September 2010.

    Google Scholar 

  209. Ballester, J., & Dopazo, C. (1994). Discharge coefficient and spray angle measurements for small pressure-swirl nozzles. Atomization and Sprays, 4(3), 351–367.

    Article  Google Scholar 

  210. Kamplade, J., Musemic, E., Walzel, P. (2013). Investigation on pressure swirl nozzles with Coanda deflection outlets. Paper presented at ILASS-Europe 2013, Chania, Greece, 1–4 September 2013.

    Google Scholar 

  211. Reitz, R.D., Bracco, F.V. (1979). On the dependence of spray angle and other spray parameters on nozzle design and operating conditions. SAE paper 790494.

    Google Scholar 

  212. Bracco, F.V., Chehroudi, B., Chen, S.H., Onuma, Y. (1985). On the intact core of full cone sprays. SAE Trans 94 paper 850126.

    Google Scholar 

  213. Lefebvre, A. H. (1989). Atomization and sprays. New York, NY: Hemisphere.

    Google Scholar 

  214. Lampe, K. (1994). Experimentelle Untersuchung und Modellierung der Mehrphasenströmung im düsennahen Bereich einer Öl-Brenner-Düse. Dissertation, Universität Bremen

    Google Scholar 

  215. Conelly, S., Coombs, J. S., & Medwell, J. O. (1986). Flow characteristics of metal particles in atomised sprays. Metal Powder Report, 41, 9.

    Google Scholar 

  216. Lampa, A., Sander, S., Schwenck, D., Fritsching, U. (2016). Recirculation, entrainment and cluster formation in bounded sprays. ICMF-2016—9th international conference on multiphase flow, May 22nd–27th 2016, Firenze, Italy.

    Google Scholar 

  217. Harvie, D. J. E., Langrish, T. A. G., & Fletcher, D. F. (2002). A computational fluid dynamics study of a tall-form spray dryer. Food and Bioproducts Processing, 80(3), 163–175.

    Article  Google Scholar 

  218. Dunkley, J.J., Telford, B. (2002). Control of satellite particles in gas atomization. Paper presented at World Congress on Powder Metallurgy and Particulate Materials PM2TEC 2002, Orlando, FL, USA, 16–21 June 2002.

    Google Scholar 

  219. Achelis, L., & Uhlenwinkel, V. (2008). Characterisation of metal powders generated by a pressure-gas-atomizer. Materials Science and Engineering A, 477, 15–20.

    Article  Google Scholar 

  220. Eslamian, M., Rak, J., & Ashgriz, N. (2008). Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization. Powder Technology, 184, 11–20.

    Article  Google Scholar 

  221. Li, B., & Lavernia, E. J. (2000). Particulate penetration into solid droplets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 31(2), 387–396.

    Article  Google Scholar 

  222. Wu, Y., & Lavernia, E. J. (1992). Interaction mechanisms between ceramic particles and atomized metallic droplets. Metallurgical Transactions A, 23(10), 2923–2937.

    Article  Google Scholar 

  223. Zhang, J., Wu, Y., & Lavernia, E. J. (1994). Kinetics of ceramic particulate penetration into spray atomized metallic droplet at variable penetration depth. Acta Metallurgica et Materialia, 42(9), 2955–2971.

    Article  Google Scholar 

  224. Hoeven, M.J. (2008). Particle-droplet collisions in spray drying. Dissertation, University of Queensland.

    Google Scholar 

  225. Majagi, S. I., Ranganathan, K., Lawley, A., & Apelian, D. (1992). Spray forming of metal matrix composites. In E. J. Lavernia & M. Gungor (Eds.), Microstructural design by solidification processing (pp. 139–149). Warrendale: The Minerals Metals & Materials Society.

    Google Scholar 

  226. Wu, Y., Zhang, J., & Lavernia, E. J. (1994). Modeling of the incorporation of ceramic particulates in metallic droplets during spray atomization and co-injection. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 25(1), 135–147.

    Article  Google Scholar 

  227. Fritsching, U., & Lampa, A. (2015). Droplet clustering in spray processes. ICLASS 2015, 13th triennial international conference on liquid atomization and spray systems, Tainan, Taiwan, August 23–27, 2015.

    Google Scholar 

  228. Giffen, E., & Muraszew, A. (1953). The Atomization of Liquid Fuels. New York: John Wiley and Sons.

    Google Scholar 

  229. Rizk, N.K., & Lefebvre, A.H. (1985). Internal flow characteristics of simplex swirl atomizers. J. Propul. Power, 1(3), 193–199.

    Google Scholar 

  230. Rivas, J.R.R., Pimenta, A.P., & Rivas, G.A.R. (2014). Development of a mathematical model and 3D numerical simulation of the internal flow in a conical swirl atomizer. Atomization and Sprays, 24(2), 97–114.

    Article  Google Scholar 

  231. Podvysotsky, A.M., & Shraiber, A.A. (1994). Coalescence and breakup of drops in two-phase flows. International Journal of Multiphase Flow, 10, 195–209.

    Google Scholar 

  232. Nourgaliev, R.R., & Theofanous, T.G. (2007). High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set. Journal of Computational Physics, 224(2), 836–866.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, Xg., Fritsching, U. (2017). Spray Transport Fundamentals. In: Henein, H., Uhlenwinkel, V., Fritsching, U. (eds) Metal Sprays and Spray Deposition. Springer, Cham. https://doi.org/10.1007/978-3-319-52689-8_4

Download citation

Publish with us

Policies and ethics