Towards an Understanding of Hole Superconductivity



From the very beginning K. Alex Müller emphasized that the materials he and George Bednorz discovered in 1986 were hole superconductors. Here I would like to share with Alex and others what I believe to be the key reason for why high Tc cuprates as well as all other superconductors are hole superconductors, which I only came to understand a few months ago.


  1. 1.
    K.A. Müller, J. Wieland, Apparatur zur Messung des Hall-Effektes und der magnetischen Widerstandsänderung mit. Wechselstrom. Helv. Phys. Acta 27, 690 (1954)Google Scholar
  2. 2.
    J. G. Bednorz, K. A. Müller, Proceedings of 18th International Conference on Low Temperature Physics, Kyoto. Jpn. J. Appl. Phys. 26(Supplement 26-3), 1781 (1987),
  3. 3.
    K. A. Müller, J. G. Bednorz, 237, 1133 (1987)Google Scholar
  4. 4.
    K. A. Müller, in “Mechanisms of High Temperature Superconductivity”, Proceedings of the 2nd NEC Symposium, Hakone, Japan, 24–27 October 1988, p. 2Google Scholar
  5. 5.
    H. Takagi, Ref. [4], p. 238Google Scholar
  6. 6.
    Private communicationGoogle Scholar
  7. 7.
    Y. Tokura, H. Takagi, S. Uchida, A superconducting copper oxide compound with electrons as the charge carriers. Nature (London) 377(345) (1989)Google Scholar
  8. 8.
    W. Jiang et al., Anomalous transport properties in superconducting Nd 1.85 Ce 0.15 CuO 4 ± δ. Phys. Rev. Lett. 73, 1291 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    P. Fournier et al., Thermomagnetic transport properties of Nd 1.85 Ce 0.15 CuO 4 + δ films: evidence for two types of charge carriers. Phys. Rev. B 56, 14149 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Dagan, R.L. Greene, ‘Hole superconductivity in the electron-doped superconductor Pr 2 − x Ce x CuO 4. Phys. Rev. B 76, 024506 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    K. Kikoin, B. Lasarew, Hall effect and superconductivity. Nature 129, 57 (1932)ADSCrossRefGoogle Scholar
  12. 12.
    K. Kikoin, B. Lasarew, Physik. Zeits. d. Sowjetunion 3, 351 (1933)Google Scholar
  13. 13.
    L. Brillouin, ‘Le champ self-consistent, pour des electrons lies; la supraconductibilite’, Jour. de Phys. et le Rad. VII, Tome IV, A. Papapetrou, ‘Bemerkungen zur Supraleitung’, Z. Phys. 92, 513 (1934)Google Scholar
  14. 14.
    M. Born, K.C. Cheng, Theory of superconductivity. Nature 161, 968 (1948)ADSCrossRefMATHGoogle Scholar
  15. 15.
    R.P. Feynman, Superfluidity and superconductivity. Rev. Mod. Phys. 29, 205 (1957)ADSCrossRefGoogle Scholar
  16. 16.
    I.M. Chapnik, On a possible criterion for superconductivity. Sov. Phys. Dokl. 6, 988 (1962)ADSGoogle Scholar
  17. 17.
    I.M. Chapnik, On the empirical correlation between the superconducting T c and the Hall coefficient. Phys. Lett. A 72, 255 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Hirsch, Hole superconductivity. Phys. Lett. A 134, 451 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    References in Scholar
  20. 20.
    W. Heisenberg, Zum Paulischen Ausschlie ungsprinzip. Ann. Phys. 402, 888 (1931)CrossRefMATHGoogle Scholar
  21. 21.
    R. Peierls, Elektronentheorie der Metalle. Ergebnisse der exakten Naturwissenschaften 11, 284 (1932)ADSMATHGoogle Scholar
  22. 22.
    R. Peierls, Zur Theorie der galvanomagnetischen Effekte. für Physik 53, 255 (1929)ADSCrossRefMATHGoogle Scholar
  23. 23.
    J.E. Hirsch, Why holes are not like electrons. II. The role of the electron-ion interaction. Phys. Rev. B 71, 104522 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba - La- Cu- 0 system. Z. Phys. B 64, 189 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    A. Bussmann-Holder, H. Keller, K.A. Müller, in Superconductivity in Complex Systems. Evidences for Polaron Formation in Cuprates (Springer, Berlin, 2005)Google Scholar
  26. 26.
    H. Keller, A. Bussmann-Holder, K.A. Müller, Jahn - Teller physics and high-T c superconductivity. Mater. Today 11, 38 (2008)CrossRefGoogle Scholar
  27. 27.
    J.E. Hirsch, S. Tang, Hole superconductivity in oxides. Solid State Commun. 69, 987 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    J.E. Hirsch, , in ‘Electron-hole Asymmetric Polarons’, ed. by E. K. H. Salje, A. S. Alexandrov and W. Y. Liang. “Polarons and Bipolarons in High-T c Superconductors and Related Materials” (Cambridge University Press, Cambridge, 1995), p. 234Google Scholar
  29. 29.
    J.E. Hirsch, Physica C 201, 347 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    J.E. Hirsch, Polaronic superconductivity in the absence of electron-hole symmetry. Phys. Rev. B 47, 5351 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    J.E. Hirsch, Dynamic Hubbard model. Phys. Rev. Lett. 87, 206402 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    J.E. Hirsch, Dynamic Hubbard model: kinetic energy driven charge expulsion, charge inhomogeneity, hole superconductivity and Meissner effect. Phys. Scr. 88, 035704 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    J.E. Hirsch, Why holes are not like electrons: a microscopic analysis of the differences between holes and electrons in condensed matter. Phys. Rev. B 65, 184502 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    J.E. Hirsch, F. Marsiglio, Superconducting state in an oxygen hole metal. Phys. Rev. B 39, 11515 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    J.E. Hirsch, F. Marsiglio, On the dependence of superconducting T c on carrier concentration. Phys. Lett. A 140, 122 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    X.Q. Hong, J.E. Hirsch, Superconductivity in the transition-metal series. Phys. Rev. B 46(14), 702 (1992)Google Scholar
  37. 37.
    B.T. Matthias, Transition temperatures of superconductors. Phys. Rev. 92, 874 (1953)ADSCrossRefGoogle Scholar
  38. 38.
    B.T. Matthias, Empirical relation between superconductivity and the number of valence electrons per atom. Phys. Rev. 97, 74 (1955)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Guo, J.M. Langlois, W.A. Goddard III, Electronic structure and valence-bond band structure of cuprate superconducting materials. Science 239, 896 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    J.E. Hirsch, Effect of orbital relaxation on the band structure of cuprate superconductors and implications for the superconductivity mechanism. Phys. Rev. B 90, 184515 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    A. Shengelaya, K.A. Müller, The intrinsic heterogeneity of superconductivity in the cuprates. EPL 109, 27001 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    F. Marsiglio, J.E. Hirsch, Hole superconductivity and the high-T c oxides. Phys. Rev. B 41, 6435 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    J.E. Hirsch, ‘Materials and mechanisms of hole superconductivity’, Physica C 472, 78 (2012) and references thereinGoogle Scholar
  44. 44.
    J.E. Hirsch, M.B. Maple, F. Marsiglio, Superconducting materials: conventional, unconventional and undetermined. Physica C 514(Special Issue), 1–444 (2015)Google Scholar
  45. 45.
    J.E. Hirsch, M.B. Maple, F. Marsiglio, Superconducting materials classes: Introduction and overview. Physica C 514, 1 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    J.E. Hirsch, Role of reduction process in the transport properties of electron-doped oxide superconductors. Physica C 243, 319 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    J.E. Hirsch, Hole superconductivity in MgB 2: a high T c cuprate without Cu. Phys. Lett. A 282, 392 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    J.E. Hirsch, F. Marsiglio, Electron-phonon or hole superconductivity in MgB 2? Phys. Rev. B 64, 144523 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    F. Marsiglio, J.E. Hirsch, Hole superconductivity in arsenic—iron compounds. Physica C 468, 1047 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    E. Bustarret, Superconductivity in doped semiconductors. Physica C 514, 36 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    J.E. Hirsch, J.J. Hamlin, Why non-superconducting metallic elements become superconducting under high pressure. Physica C 470, S937 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Jing Guo et al, ‘The vital role of hole-carriers for superconductivity in pressurized black phosphorus’, arXiv:1611.03330 (2016)Google Scholar
  53. 53.
    J.E. Hirsch, F. Marsiglio, Hole superconductivity in H 2 S and other sulfides under high pressure. Physica C 511, 45 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    A.A. Manuel et al., Contribution to the determination of the Fermi surface of V 3 Si by positron annihilation. Solid State Commun. 31, 955 (1979)ADSCrossRefGoogle Scholar
  55. 55.
    S. Berko, M. Weger, Investigation of the Fermi surface of V 3 Si by means of positron annihilation. Phys. Rev. Lett. 24, 55 (1970)ADSCrossRefGoogle Scholar
  56. 56.
    L. Hoffmann, A.K. Singh, H. Takei, N. Toyota, Fermi surfaces in Nb 3 Sn through positron annihilation. J. Phys. F 18, 2605 (1988)ADSCrossRefGoogle Scholar
  57. 57.
    J.E. Hirsch, Bond-charge repulsion and hole superconductivity. Physica C 158, 326 (1989)ADSCrossRefGoogle Scholar
  58. 58.
    J.E. Hirsch, Coulomb attraction between Bloch electrons. Phys. Lett. A 138, 83 (1989)ADSCrossRefGoogle Scholar
  59. 59.
    J.E. Hirsch, Correlations between normal-state properties and superconductivity. Phys. Rev. B 55, 9007 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    J.E. Hirsch, The missing angular momentum of superconductors. J. Phys. Condens. Matter 20, 235233 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    J.E. Hirsch, On the reversibitity of the Meissner effect and the angular momentum puzzle. Ann. Phys. (New York) 373, 230 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    J.E. Hirsch, Momentum of superconducting electrons and the explanation of the Meissner effect. Phys. Rev. B 95, 014503 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    J.E. Hirsch, The disappearing momentum of the supercurrent in the superconductor to normal phase transformation. Europhys. Lett. 114, 57001 (2016)ADSCrossRefGoogle Scholar
  64. 64.
    J.F. Schooley et al., Phys. Rev. Lett. 14, 305 (1965)ADSCrossRefGoogle Scholar
  65. 65.
    A. Bussmann-Holder, A.R. Bishop, A. Simon, SrTiO 3: from quantum paraelectric to superconducting. Ferroelectrics 400, 19 (2010)CrossRefGoogle Scholar
  66. 66.
    X. Lin, Z. Zhu, B. Fauque, K. Behnia, Fermi surface of the most dilute superconductor. Phys. Rev. X 3, 021002 (2013)Google Scholar
  67. 67.
    O.F. Schirmer, W. Berlinger, K.A. Müller, Holes trapped near Mg 2+ and Al 3+ impurities in SrTiO 3. Solid State Commun. 18, 1505 (1976)ADSCrossRefGoogle Scholar
  68. 68.
    J. E. Hirsch, in ‘Electron-hole Asymmetry: The Key to Superconductivity’, ed. by J. Ashkenazi et al. “High Temperature Superconductivity: Physical Properties, Microscopic Theory, and Mechanisms” (Springer, New York, 1991), p. 295Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations