Skip to main content

Biohydrogen Production: Integrated Approaches to Improve the Process Efficiency

  • Chapter
  • First Online:
Microbial Applications Vol.1

Abstract

In recent years, hydrogen (H2) has emerged as a clean and attractive substitute fuel since it can be produced from renewable energy sources. Upon combustion of hydrogen, it generates only water as a major by-product. In hydrogen and fuel cell technology, hydrogen can be applied in fuel cell technology; it produces only water as a major by-product with high energy yield, hold great potential for meeting in a quite unique way by empowering the so-called hydrogen-based economy. To make hydrogen-based economy viable, it is crucial to use renewable resources in place of fossil fuels to produce hydrogen. In this direction, by considering attractive and renewable characteristics of hydrogen led us to improve a variety of biological processes for the production of hydrogen. Nonetheless, commercialization of the biological process depends on improvements in process design along with an understanding of the nature of hydrogen producing communities and process optimization. Thus, this chapter highlights the major factors involved towards the improvement of biohydrogen production processes. Environmental impact of hydrogen as carbon-neutral energy carrier is also discussed. This also includes a technical and economic analysis of the biohydrogen and its role in the proposed hydrogen economy coupled with fuel cell and in transport application. Technological advancements based on hydrogen-based fuel cell designs and process integration approaches are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amulya K, Venkateswar Reddy M, Venkata Mohan S (2014) Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production. Bioresour Technol 158:336–342. doi:10.1016/j.biortech.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  • Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173. doi:10.1016/j.rser.2013.11.022

    Article  CAS  Google Scholar 

  • Bala Amutha K, Murugesan AG (2011) Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment. Bioresour Technol 102:194–199. doi:10.1016/j.biortech.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Stöckel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139. doi:10.1038/ncomms1139

    Article  PubMed  Google Scholar 

  • Boichenko VA, Greenbaum E, Seibert M (2004) Hydrogen production by photosynthetic microorganisms. In: Archer MD, Barber J (eds) Molecular to global photosynthesis. Imperial College Press, London, pp 397–451. doi:10.1007/978-0-585-35132-2_40

    Chapter  Google Scholar 

  • Brentner LB, Jordan PA, Zimmerman JB (2010) Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environ Sci Technol 44:2243–2254. doi:10.1021/es9030613

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Venkata Mohan S (2011) Microalgal community and their growth conditions influence biohydrogen production during integration of dark-fermentation and photo-fermentation processes. Int J Hydrogen Energy 36:12211–12219. doi:10.1016/j.ijhydene.2011.07.007

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Venkata Mohan S (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of pah: effect of substrate concentration. Bioresour Technol 110:517–525. doi:10.1016/j.biortech.2012.01.128

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar K, Venkata Mohan S (2014a) Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: function of electron flux to enhance acidogenic biohydrogen production. Int J Hydrogen Energy 39:11411–11422. doi:10.1016/j.ijhydene.2014.05.035

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Venkata Mohan S (2014b) Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production. Bioresour Technol 165:372–382. doi:10.1016/j.biortech.2014.02.073

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar K, Lee YJ, Lee DW (2015a) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16:8266–8293. doi:10.3390/ijms16048266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekhar K, Amulya K, Venkata Mohan S (2015b) Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation. Waste Manage 45:57–65. doi:10.1016/j.wasman.2015.06.001

    Article  CAS  Google Scholar 

  • Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci 104:18871–18873. doi:10.1073/pnas.0706379104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Liang YL, Xing X, Liu X, Han R, Lv Q, Mishra S (2012) Efficient misbehaving user detection in online video chat services. In: Proceedings of the fifth ACM international conference on Web search and data mining. ACM, Seattle, Washington, pp 23–32. doi:10.1145/2124295.2124301

  • Christopher K, Dimitrios RA (2012) Review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci 5:6640–6651. doi:10.1039/C2EE01098D

    Article  CAS  Google Scholar 

  • Deval AS, Parikh HA, Kadier A, Chandrasekhar K, Bhagwat AM, Dikshit AK (2016) Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation. Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2016.11.114

  • Elam CC, Padró CEG, Sandrock G, Luzzi A, Lindblad P, Hagen EF (2003) Realizing the hydrogen future: the international energy agency’s efforts to advance hydrogen energy technologies. Int J Hydrogen Energy 28:601–607. doi:10.1016/S0360-3199(02)00147-7

    Article  CAS  Google Scholar 

  • Esquível MG, Amaro HM, Pinto TS, Fevereiro PS, Malcata FX (2011) Efficient h2 production via Chlamydomonas reinhardtii. Trends Biotechnol 29:595–600. doi:10.1016/j.tibtech.2011.06.008

    Article  PubMed  Google Scholar 

  • Gonzalez del Campo A, Cañizares P, Lobato J, Rodrigo MA, Fernandez FJ (2012) Electricity production by integration of acidogenic fermentation of fruit juice wastewater and fuel cells. Int J Hydrogen Energy 37:9028–9037. doi:10.1016/j.ijhydene.2012.03.007

    Article  CAS  Google Scholar 

  • Hallenbeck P (2012) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, New york, pp 15–28. doi:10.1007/978-1-4614-1208-3_2

    Chapter  Google Scholar 

  • Intanoo P, Rangsanvigit P, Malakul P, Chavadej S (2014) Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation. Bioresour Technol 173:256–265. doi:10.1016/j.biortech.2014.09.039

    Article  CAS  PubMed  Google Scholar 

  • Kadier A, Simayi Y, Chandrasekhar K, Ismail M, Kalil MS (2015) Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC). Int J Hydrogen Energy 40:14095–14103. doi:10.1016/j.ijhydene.2015.08.095

    Article  CAS  Google Scholar 

  • Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex Eng J 55:427–443. doi:10.1016/j.aej.2015.10.008

    Article  Google Scholar 

  • Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi:10.1007/s10295-007-0300-y

    Article  CAS  PubMed  Google Scholar 

  • Kiran Kumar A, Venkateswar Reddy M, Chandrasekhar K, Srikanth S, Venkata Mohan S (2012) Endocrine disruptive estrogens role in electron transfer: bio-electrochemical remediation with microbial mediated electrogenesis. Bioresour Technol 104:547–556. doi:10.1016/j.biortech.2011.10.037

    Article  CAS  PubMed  Google Scholar 

  • Kosourov SN, Ghirardi ML, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrogen Energy 36:2044–2048. doi:10.1016/j.ijhydene.2010.10.041

    Article  CAS  Google Scholar 

  • Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014a) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi:10.1007/s12088-014-0467-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014b) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi:10.1007/s12088-014-0457-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar G, Bakonyi P, Sivagurunathan P, Kim SH, Nemestóthy N, Bélafi-Bakó K (2015a) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev 44:728–737. doi:10.1016/j.rser.2015.01.042

  • Kumar P, Ray S, Patel SK, Lee JK, Kalia VC (2015b) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16. doi:10.1016/j.ijbiomac.2015.03.046

  • Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2015c) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. doi:10.1016/j.biortech.2015.01.138

  • Kumar G, Bakonyi P, Kobayashi T, Xub K-Q, Sivagurunathan P, Kim S-H, Buitrón G, Nemestóthy N, Bélafi-Bakó K (2016a) Enhancement of biofuel production via microbial augmentation: the case of dark fermentative hydrogen. Renew Sustain Energy Rev 57:879–891. doi:10.1016/j.rser.2015.12.107

    Article  CAS  Google Scholar 

  • Kumar P, Ray S, Kalia VC (2016b) Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol 200:413–419. doi:10.1016/j.biortech.2015.10.045

    Article  CAS  PubMed  Google Scholar 

  • Lalaurette E, Thammannagowda S, Mohagheghi A, Maness PC, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrogen Energy 34:6201–6210. doi:10.1016/j.ijhydene.2009.05.112

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Belokopytov BF, Laurinavichius KS, Khusnutdinova AN, Seibert M, Tsygankov AA (2012) Towards the integration of dark- and photo-fermentative waste treatment. 4. Repeated batch sequential dark- and photofermentation using starch as substrate. Int J Hydrogen Energy 37:8800–8810. doi:10.1016/j.ijhydene.2012.01.132

    Article  CAS  Google Scholar 

  • Lee SJ, Lee SJ, Lee DW (2013) Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 4:92. doi:10.3389/fmicb.2013.00092

    PubMed  PubMed Central  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. J Plant Physiol 122:127–136. doi:10.1104/pp.122.1.127

    Article  CAS  Google Scholar 

  • Mullai P, Rene ER, Sridevi K (2013) Biohydrogen production and kinetic modeling using sediment microorganisms of pichavaram mangroves, India. Biomed Res Int. doi:10.1155/2013/265618

    PubMed  PubMed Central  Google Scholar 

  • Özkan E, Uyar B, Özgür E, Yücel M, Eroglu I, Gündüz U (2012) Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. Int J Hydrogen Energy 37:2044–2049. doi:10.1016/j.ijhydene.2011.06.035

    Article  Google Scholar 

  • Pandit S, Balachandar G, Das D (2014) Improved energy recovery from dark fermented cane molasses using microbial fuel cells. Front Chem Sci Eng 8:43–54. doi:10.1007/s11705-014-1403-4

    Article  CAS  Google Scholar 

  • Patel SKS, Kumar P, Kalia VC (2012a) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. doi:10.1016/j.ijhydene.2012.04.045

    Article  CAS  Google Scholar 

  • Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012b) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi:10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  • Patel SKS, Kumar P, Mehariya S, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39:14663–14668. doi:10.1016/j.ijhydene.2014.07.084

    Article  CAS  Google Scholar 

  • Rai P, Singh SP, Asthana RK (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. App Biochem Biotech 167:1540–1549. doi:10.1007/s12010-011-9488-4

    Article  CAS  Google Scholar 

  • Roy S, Das D (2016) Biohythane production from organic wastes: present state of art. Environ Sci Pollut Res Int 23:9391–9410

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Banerjee D, Dutta M, Das D (2015) Metabolically redirected biohydrogen pathway integrated with biomethanation for improved gaseous energy recovery. Fuel 158:471–478. doi:10.1016/j.fuel.2015.05.060

    Article  CAS  Google Scholar 

  • Roy S, Sinha P, Das D (2016) Genomic and proteomic approaches for dark fermentative biohydrogen production. Renew Sustain Energy Rev 56:1308–1321. doi:10.1016/j.rser.2015.12.035

    Article  Google Scholar 

  • Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157:613–619. doi:10.1016/j.jbiotec.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  • Tekucheva DN, Tsygankov AA (2012) Coupled biological hydrogen-producing systems: a review. Prikl Biokhim Mikrobiol 48:357–375. doi:10.1016/j.biortech.2011.03.026

    CAS  PubMed  Google Scholar 

  • Venkata Mohan S, Chandrasekhar K (2011a) Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresour Technol 102:9532–9541. doi:10.1016/j.biortech.2011.07.038

    Article  PubMed  Google Scholar 

  • Venkata Mohan S, Chandrasekhar K (2011b) Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresour Technol 102:7077–7085. doi:10.1016/j.biortech.2011.04.039

    Article  PubMed  Google Scholar 

  • Venkata Mohan S, Devi MP (2012) Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour Technol 123:627–635. doi:10.1016/j.biortech.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  • Venkata Mohan S, Pandey A (2013) Biohydrogen production: an introduction. In: Larroche AP-SCCH (ed) Biohydrogen. Elsevier, Amsterdam, pp 1–24. doi:10.1016/B978-0-444-59555-3.00001-5

    Chapter  Google Scholar 

  • Venkata Mohan S, Devi MP, Venkateswar Reddy M, Chandrasekhar K, Juwarkar A, Sarma PN (2011) Bioremediation of petroleum sludge under anaerobic microenvironment: influence of biostimulation and bioaugmentation. Environ Eng Manage J 10:1609–1616

    Google Scholar 

  • Venkata Mohan S, Chandrasekhar K, Chiranjeevi P, Babu PS (2013) Biohydrogen production from wastewater. In: Larroche AP-SCCH (ed) Biohydrogen. Elsevier, Amsterdam, pp 223–257. doi:10.1016/B978-0-444-59555-3.00010-6

    Chapter  Google Scholar 

  • Venkateswar Reddy M, Chandrasekhar K, Venkata Mohan SV (2011a) Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment. J Biotechnol 155:387–395. doi:10.1016/j.jbiotec.2011.07.030

    Article  PubMed  Google Scholar 

  • Venkateswar Reddy M, Devi MP, Chandrasekhar K, Goud RK, Venkata Mohan SV (2011b) Aerobic remediation of petroleum sludge through soil supplementation: microbial community analysis. J Hazard Mater 197:80–87. doi:10.1016/j.jhazmat.2011.09.061

    Article  PubMed  Google Scholar 

  • Wagner RC, Regan JM, Oh S-E, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480–1488. doi:10.1016/j.watres.2008.12.037

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34:799–811. doi:10.1016/j.ijhydene.2008.11.015

    Article  CAS  Google Scholar 

  • Wieczorek N, Kucuker MA, Kuchta K (2014) Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process. Appl Energy 132:108–117. doi:10.1016/j.apenergy.2014.07.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Kuppam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuppam, C., Pandit, S., Kadier, A., Dasagrandhi, C., Velpuri, J. (2017). Biohydrogen Production: Integrated Approaches to Improve the Process Efficiency. In: Kalia, V., Kumar, P. (eds) Microbial Applications Vol.1. Springer, Cham. https://doi.org/10.1007/978-3-319-52666-9_9

Download citation

Publish with us

Policies and ethics