Skip to main content

Microbial Conversion of Waste and Surplus Materials into High-Value Added Products: The Case of Biosurfactants

  • Chapter
  • First Online:

Abstract

During the last decades, researchers have been focusing on the development of economically viable bioprocesses, in order to produce fine and platform chemicals and polymers that will eventually replace the ones deriving from the petrochemical industries. Waste and surplus materials are inexpensive raw materials that do not directly compete with food, while their utilization maximizes the efficiency of the overall production process. Microbial conversion of such materials, deriving from various industrial processes, into biosurfactants is considered beneficial from a societal, environmental, and economic point of view since it contributes toward environmental protection, sustainability, and reduction of costs. Biosurfactants produced by bacteria may eventually replace synthetic surfactants due to their biodegradability and environmental compatibility. Interestingly, the diversity of their chemical structures and their complexity provides them unique features. Therefore, they are characterized by remarkable physicochemical properties so their potential industrial applications are quite diverse as they can be used as emulsifiers, de-emulsifiers, wetting, spreading, and foaming agents, functional food ingredients, and detergents in various industrial sectors such as petroleum and petrochemicals, organic chemicals, food and beverages, cosmetics and pharmaceuticals, mining and metallurgy, agrochemicals and fertilizers, and environmental control and management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:289–303. doi:10.1007/s12010-008-8153-z

    Article  CAS  PubMed  Google Scholar 

  • AGAE technologies, USA. http://www.agaetech.com/new-product-catalog-2/, accessed on October 2015

  • Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ, Al-Makhamari HS, Sulaimani HS (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeter Biodegr 81:141–146. doi:10.1016/j.ibiod.2012.01.006

    Article  CAS  Google Scholar 

  • Almeida FCG, Lins CIM, Vieira AM, Vilar CJ, Mota Lins MC, Campos-Takaki GM, Tambourgi EB (2012) Biosurfactant production by Pantoea sp in submerged fermentation using pineapple peel as an alternative medium. In: Mendez-Vilas A (ed) Microbes in applied research-current advances and challenges. World Scientific, Singapore, pp 348–352

    Chapter  Google Scholar 

  • Araujo LV, Abreu F, Lins U, Santa Anna LMM, Nitschke M, Freire DMG (2011) Rhamnolipid and surfactin inhibit Listeria monocytogenes adhesion. Food Res Int 44:481–488. doi:10.1016/j.foodres.2010.09.002

    Article  CAS  Google Scholar 

  • Ashby RD, Nuñez A, Solaiman DKY, Foglia TA (2005) Sophorolipid biosynthesis from a biodiesel co-product stream. J Am Oil Chem Soc 82:625–630. doi:10.1007/s11746-005-1120-3

    Article  CAS  Google Scholar 

  • Asmer HJ, Lang S, Wagner F, Wray V (1988) Microbial-production, structure elucidation and bioconversion of sophorose lipids. J Am Oil Chem Soc 65:1460–1466. doi:10.1007/BF02898308

    Article  CAS  Google Scholar 

  • Asselineau C, Asselineau J (1978) Trehalose containing glycolipids. Prog Chem Fats Other Lipids 16:59–99. doi:10.1016/0079-6832(78)90037-X

    Article  CAS  PubMed  Google Scholar 

  • Awada SM, Awada M, Spendlove RS (2011) Method of controlling pests with biosurfactant penetrants as carriers for active agents. Patent: US2011/0319341 A1

    Google Scholar 

  • Bae Y, Baek S, Lee S (2012) Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Int J Food Microbiol 153:465–473. doi:10.1016/j.ijfoodmicro.2011.12.017

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. doi:10.1007/s00253-010-2589-0

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697. doi:10.3389/fmicb.2014.00697

    Article  PubMed  PubMed Central  Google Scholar 

  • Barros FFC, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35:1071–1078. doi:10.1007/s10295-008-0385-y

    Article  CAS  PubMed  Google Scholar 

  • Bednarski W, Adamczak M, Tomasik J, Plaszczyk M (2004) Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Bioresour Technol 95:15–18. doi:10.1016/j.biortech.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M, Accorsini FR (2008) Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate. Bioresour Technol 99:3843–3849. doi:10.1016/j.biortech.2007.06.048

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 54:283–288. doi:10.1016/S0260-8774(01)00214-X

    Article  Google Scholar 

  • Bensaci MF, Ganghi NR, Palmer SVL, Takemoto JY (2007) Antimycotic rhamnolipid compositions and related methods of use. Patent: WO2007095259 A2

    Google Scholar 

  • Borges WS, Cardoso VL, Resende MM (2012) Use of a greasy effluent floater treatment station from the slaughterhouse for biosurfactant production. Biotechnol Appl Biochem 59:238–244. doi:10.1002/bab.1018

    Article  CAS  Google Scholar 

  • Bralkowski MP, Brooks SA, Hinton SM, Wright DM, Yang SH (2013) Improved poultry farm practices. Patent: WO2013110133 A1

    Google Scholar 

  • Bruce AW, Busscher HJ, Reid G, Van der Mei HC (2000) Lactobacillus therapies. U.S. Patent US6051552 A

    Google Scholar 

  • Bustamante M, Durán N, Diez MC (2012) Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J Soil Sci Plant Nutr 12:667–687. doi:10.4067/S0718-95162012005000024

    Google Scholar 

  • Buthe A, Hafner A, Kaufmann F, Fiedler B, Meurer G, Bradley G (2012) Compositions, use and method for the use of surface active proteins in topical drug delivery across keratin. Patent: EP2400988 A1

    Google Scholar 

  • Cagri-Mehmetoglu A, Kusakli S, van de Venter M (2012) Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. J Dairy Sci 95:3643–3649. doi:10.3168/jds.2012-5385

  • Cammarota MC, Freire DMG (2006) A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour Technol 97:2195–2210. doi:10.1016/j.biortech.2006.02.030

    Article  CAS  PubMed  Google Scholar 

  • Cao XH, Wang AH, Wang CL, Mao DZ, Lu MF, Cui YQ, Jiao RZ (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362. doi:10.1016/j.cbi.2009.11.027

    Article  CAS  PubMed  Google Scholar 

  • Castro GR, Kaplan DL, Panilaitis B (2009) Emulsan-alginate microspheres and methods of use thereof. Patent: WO2006028996 A3

    Google Scholar 

  • Çelik E, Ozbay N, Oktar N, Çalık P (2008) Use of biodiesel byproduct crude glycerol as the carbon source for fermentation processes by recombinant Pichia pastoris. Ind Eng Chem Res 47:2985–2990. doi:10.1021/ie071613o

    Article  CAS  Google Scholar 

  • Chander CRS, Lohitnath T, Kumar DJM, Kalaichelvan PT (2012) Production and characterization of biosurfactant from Bacillus subtilis MTCC441 and its evaluation to use as bioemulsifier for food bio–preservative. Adv Appl Sci Res 3:1827–1831

    Google Scholar 

  • Chen J, Song X, Zhang H, Qu Y, Miao J (2006) Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol 72:52–59. doi:10.1007/s00253-005-0243-z

    Article  CAS  PubMed  Google Scholar 

  • Cheow WS, Hadinoto K (2012) Lipid-polymer hybrid nanoparticles with rhamnolipid-triggered release capabilities as anti-biofilm drug delivery vehicles. Particuology 10:327–333. doi:10.1016/j.partic.2011.08.007

    Article  CAS  Google Scholar 

  • Cheowtirakul C, Linh ND (2010) The study of biosurfactant as a cleaning agent for insecticide residue in leafy vegetables. AU J T 14(2):75–87

    Google Scholar 

  • Choe E, Min DB (2007) Chemistry of deep-fat frying oils. J Food Sci 72:77–86. doi:10.1111/j.1750-3841.2007.00352.x

    Article  CAS  Google Scholar 

  • Chooklin CS, Maneerat S, Saimmai A (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl Biochem Biotechnol 173:624–645. doi:10.1007/s12010-014-0870-x

    Article  CAS  PubMed  Google Scholar 

  • Christova N, Stoineva I (2014) Trehalose biosurfactants. In: Mulligan CN, Sharma SK, Mudhoo A (eds) Biosurfactants—recent trends and applications. CRC, Taylor & Francis, Boca Raton, FL, pp 197–216

    Chapter  Google Scholar 

  • Concaix FB (2003) Use of sophorolipids comprising diacetyl lactones as agent for stimulating skin fibroblast, metabolism. Patent: US6596265 B1

    Google Scholar 

  • Connolly HE, Rahman PKSM, Banat IM, Lord RA (2010) Resource recovery and reduction of oily hazardous wastes via biosurfactant washing and bioremediation. In: Grazyna P (ed) Trends in bioremediation and phytoremediation. Research Signpost, Trivandrum, India, pp 157–172

    Google Scholar 

  • Costa SGVAO, Deziel E, Lepine F (2011) Characterization of rhamnolipid production by Burkholderia glumae. Lett Appl Microbiol 53:620–627. doi:10.1111/j.1472-765X.2011.03154.x

    Article  CAS  PubMed  Google Scholar 

  • Cruz MV, Freitas F, Paiva A, Mano F, Dionísio M, Ramos AM, Reis MAM (2016) Valorisation of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnol 33(1):206–215. doi:10.1016/j.nbt.2015.05.005

    Article  CAS  Google Scholar 

  • Dams-Kozlowska H, Mercaldi MP, Panilaitis BJ, Kapla DJ (2008) Modifications and applications of the Acinetobacter venetianus RAG-1 exopolysaccharide, the emulsan complex and its components. Appl Microbiol Biotechnol 81:201–210. doi:10.1007/s00253-008-1664-2

    Article  CAS  PubMed  Google Scholar 

  • Daniel H-J, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Appl Microbiol Biotechnol 51:40–45. doi:10.1023/A:1005332605003

    Article  CAS  PubMed  Google Scholar 

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Proc Biochem 42:1191–1199. doi:10.1016/j.procbio.2007.05.011

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol. 104:1675–1684. doi:10.1111/j.1365-2672.2007.03701.x

    Article  CAS  PubMed  Google Scholar 

  • Daverey A, Pakshirajan K (2009a) Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int 42:499–504. doi:10.1016/j.foodres.2009.01.014

    Article  CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2009b) Production, characterization and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 158:663–674. doi:10.1007/s12010-008-8449-z

    Article  CAS  PubMed  Google Scholar 

  • Daverey A, Pakshirajan K (2010) Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surf B Biointerfaces 79:246–253. doi:10.1016/j.colsurfb.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  • Davila AM, Marchal R, Monin N, Vandecasteele JP (1993) Identification and determination of individual sophorolipids in fermentation products by gradient elution high-performance liquid-chromatography with evaporative light-scattering detection. J Chromatogr 648:139–149. doi:10.1016/0021-9673(93)83295-4

    Article  CAS  PubMed  Google Scholar 

  • Desai JD (1987) Microbial surfactants: evaluation, types and future applications. J Sci Ind Res 46:440–449

    CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microb Mol Biol Rev 61(1):47–64

    CAS  Google Scholar 

  • De Santo K (2009) Rhamnolipid-based formulations. Patent: WO2008013899 A2

    Google Scholar 

  • Deshpande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour Technol 54:143–150. doi:10.1016/0960-8524(95)00116-6

    Article  CAS  Google Scholar 

  • Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263. doi:10.1186/1471-2180-9-263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumont M-J, Narine SS (2007) Soapstock and deodorizer distillates from North American vegetable oils: review on their characterization, extraction and utilization. Food Res Int 40:957–974. doi:10.1016/j.foodres.2007.06.006

    Article  CAS  Google Scholar 

  • Eddouaouda K, Mnif S, Badis A, Younes SB, Cherif S, Ferhat S, Mhiri N, Chamkha M, Sayadi S (2012) Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation. J Basic Microbiol 52:408–418. doi:10.1002/jobm.201100268

    Article  CAS  PubMed  Google Scholar 

  • Eigen A, Simone AJ (1990) Control of dental plaque and caries. Patent: CA1269333 A1

    Google Scholar 

  • Emaga TH, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M (2007) Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem 103:590–600. doi:10.1016/j.foodchem.2006.09.006

    Article  CAS  Google Scholar 

  • Emiroglu M (2011) Micafungin use in children. Expert Rev Anti Infect Ther 9:821–834. doi:10.1586/eri.11.91

    Article  CAS  PubMed  Google Scholar 

  • Fattom A, Shilo M (1985) Production of emulcyan by Phormidium J-1: its activity and function. FEMS Microbiol Lett 31:3–9. doi:10.1111/j.1574-6968.1985.tb01125.x

    Article  CAS  Google Scholar 

  • Felse PA, Shah V, Chan J, Rao KJ, Gross RA (2007) Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzyme Microb Technol 70:316–323. doi:10.1016/j.enzmictec.2006.04.013

    Article  CAS  Google Scholar 

  • Fontes GC, Ramos NM, Amaral PFF, Nele M, Coelho MAZ (2012) Renewable resources for biosurfactant production by Yarrowia lipolytica. Braz J Chem Eng 29:483–493. doi:10.1590/S0104-66322012000300005

    Article  CAS  Google Scholar 

  • Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers: biomedical and related applications-present status and future potentials. In: Ghista DN (ed) Biomedical science, engineering and technology. InTech, Rijeka, pp 325–370

    Google Scholar 

  • Freitas F, Alves VD, Pais J, Carvalheira M, Costa N, Oliveira R, Reis MAM (2010) Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Proc Biochem 45:297–305. doi:10.1016/j.procbio.2009.09.020

    Article  CAS  Google Scholar 

  • Freitas F, Alves VD, Torres AV, Cruz M, Sousa I, Melo MJ, Ramos AM, MAM (2011) Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydr Polymer 83:1582–1590. doi:10.1016/j.carbpol.2010.07.034

    Article  CAS  Google Scholar 

  • Fuhrman J, Gross RA, Kaplan DL (2001) Emulsan and emulsan analogs immunization formulations and use. Patent: WO2000051635 A3

    Google Scholar 

  • Fukushi K (1984) Therapeutic agents. Patent: US4454119 A

    Google Scholar 

  • Futura T, Igarashi K, Hirata Y (2002) Low-foaming detergent compositions. World patent 03/002700

    Google Scholar 

  • George S, Jayachandran K (2009) Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Appl Biochem Biotechnol 158:694–705. doi:10.1007/s12010-008-8337-6

    Article  CAS  PubMed  Google Scholar 

  • George S, Jayachandran K (2013) Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J Appl Microbiol 114:373–383. doi:10.1111/jam.12069

    Article  CAS  PubMed  Google Scholar 

  • George J, Reboli AC (2012) Anidulafungin: when and how? The clinician’s view. Mycoses 55:36–44. doi:10.1111/j.1439-0507.2011.02052.x

    Article  CAS  PubMed  Google Scholar 

  • Gharaei-Fathabad E (2011) Biosurfactants in pharmaceutical industry (a mini review). Am J Drug Discov Dev 1:58–69. doi:10.3923/ajdd.2011.58.69

    Article  Google Scholar 

  • Ghribi D, Mnif I, Boukedi H, Kammoun R, Ellouze-Chaabouni S (2011) Statistical optimization of low-cost medium for economical production of Bacillus subtilis biosurfactant, a biocontrol agent for the olive moth Prays oleae. Afr J Microbiol Res 5:4927–4936. doi:10.5897/AJMR11.1125

    Google Scholar 

  • Giessler-Blank S, Schilling M, Thum O, Sieverding E (2012) Use of sophorolipids and derivatives thereof in combination with pesticides as adjuvant/additive for plant protection and the industrial non-crop field. Patent: US20120220464 A1

    Google Scholar 

  • Gomes MZV, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25:441–447. doi:10.1016/j.foodcont.2011.11.025

    Article  CAS  Google Scholar 

  • Gong Z, Peng Y, Wang Q (2015) Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils. Biotechnol Lett 37:2033–2038. doi:10.1007/s10529-015-1885-2

    Article  CAS  PubMed  Google Scholar 

  • Griffin W (1954) Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem 5:235–249

    Google Scholar 

  • Gross RA, Schofield MH (2014) Sophorolipid analog compositions. Patent: US20140024816 A1

    Google Scholar 

  • Gross RA, Vishai S (2004) Antimicrobial properties of various forms of sophorolipids. Patent: WO2004044216 A1

    Google Scholar 

  • Gross RA, Shah V, Nerud F, Madamwars D (2007) Sophorolipids as protein inducers and inhibitors in fermentation medium. Patent: WO2007/073371

    Google Scholar 

  • Gudiña EJ, Pereira JFB, Rodrigues LR, Coutinho JAP, Teixeira JA (2012) Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. Int Biodeter Biodegr 68:56–64. doi:10.1016/j.ibiod.2012.01.001

    Article  CAS  Google Scholar 

  • Gudiña EJ, Pereira JFB, Costa R, Evtuguin DV, Coutinho JAP, Teixeira JA, Rodrigues LR (2015) Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microb Cell Fact 14:14. doi:10.1186/s12934-015-0197-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guidry TV, Hunter RL, Actor JK (2007) Mycobacterial glycolipid trehalose 6,6′-dimycolate-inducedhypersensitive granulomas: contribution of CD4+ lymphocytes. Microbiology 153:3360–3369. doi: 10.1099/mic.0.2007/010850-0

  • Gunther NW, Nunez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293. doi:10.1128/AEM.71.5.2288-2293.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutnick DL, Bach HR (2002) Compositions containing bioemulsifiers and a method for their preparation. Patent: WO2002048327

    Google Scholar 

  • Hausmann R, Syldatk C (2015) Types and classification of microbial surfactants. In: Kosaric N, Vardar-Sukan F (eds) Biosurfactants, production and utilization-processes, technologies, and economics. CRC, Taylor & Francis, Boca Raton, FL, pp 3–18

    Google Scholar 

  • Hayes ME, Holzner G (1986) Cosmetic and pharmaceutical compositions containing bioemulsifiers. Patent: EP0178443 A2

    Google Scholar 

  • Heins SD, Manker DC, Jimerez DR, McCoy RJ, Marrone PG, Orjala JE (2001) Strain of Bacillus for controlling plant diseases and corn rootworm. Patent: US6291426 B1

    Google Scholar 

  • Hilliou L, Freitas F, Oliveira R, Reis MAM, Lespineux D, Grandfils C, Alves VD (2009) Solution properties of exopolysaccharide from a Pseudomonas strain obtained using glycerol as single carbon source. Carbohydr Polymer 78:526–532. doi:10.1016/j.carbpol.2009.05.011

    Article  CAS  Google Scholar 

  • Hirata Y, Ryu M, Igarashi K, Nagatsuka A, Furuta T, Kanaya S, Sugiura M (2009a) Natural synergism of acid and lactone type mixed sophorolipids in interfacial activities and cytotoxicities. J Oleo Sci 58:565–572. doi:10.5650/jos.58.565

    Article  CAS  PubMed  Google Scholar 

  • Hirata Y, Ryu M, Oda Y, Igarashi K, Nagatsuka A, Furuta T, Sugiura M (2009b) Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J Biosci Bioeng 108:142–146. doi:10.1016/j.jbiosc.2009.03.012

    Article  CAS  PubMed  Google Scholar 

  • Hoermann B, Mueller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509T. Eur J Lipid Sci Technol 112:674–680. doi:10.1002/ejlt.201000030

    Article  CAS  Google Scholar 

  • Hu S, Luo X, Wan C, Li Y (2012) Characterization of crude glycerol from biodiesel plants. J Agric Food Chem 60:5915–5921. doi:10.1021/jf3008629

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Liu Z-M (2013) Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B 105:113–119. doi:10.1016/j.colsurfb.2012.12.040

    Article  CAS  Google Scholar 

  • Huang X, Lu Z, Zhao H, Bie X, Lü FX, Yang S (2006) Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 12:373–377. doi:10.1007/s10989-006-9041-4

    Article  CAS  Google Scholar 

  • Huang X, Suo J, Cui Y (2011) Optimization of antimicrobial activity of surfactin and polylysine against Salmonella enteritidis in milk evaluated by a response surface methodology. Foodborne Pathog Dis 8:439–443. doi:10.1089/fpd.2010.0738

    Article  CAS  PubMed  Google Scholar 

  • Husain S (2008) Effect of surfactants on pyrene degradation by Pseudomonas fluorescens 29 L. World J Microbiol Biotechnol 24:2411–2419. doi:10.1007/s11274-008-9756-9

    Article  CAS  Google Scholar 

  • Igbonekwu CJ, Osonwa UE, Umeyor CE, Ikegbunam MN, Uronnachi EM, Esimone CO (2014) Biosurfactant produced by novel halo-thermophilic bacterial strain from unconventional substrates. Int J Pharmacogn 9:73–81. doi:10.13040/IJPSR.0975-8232.IJP

    Google Scholar 

  • Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp strain SD-74. Appl Environ Microbiol 79:7082–7090. doi:10.1128/AEM.01664-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M (2010) The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection. Int J Pharm 398:225–230. doi:10.1016/j.ijpharm.2010.07.042

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888. doi:10.1084/jem.20091750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav M, Kagalkar A, Jadhav S, Govindwar S (2011) Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur J Lipid Sci Technol 113:1347–1356. doi:10.1002/ejlt.201100023

    Article  CAS  Google Scholar 

  • Jain RM, Mody K, Joshi N, Mishra A, Jha B (2013) Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation. Int J Biol Macromol 62:52–58. doi:10.1016/j.ijbiomac.2013.08.030

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Navare K, Khanvilkar P, Prabhune A (2013) Jatropha oil derived sophorolipids: production and characterization as laundry detergente additive. Biochem Res Int 2013:169797. doi:10.1155/2013/169797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002. doi:10.1016/j.chemosphere.2007.02.027

    Article  CAS  PubMed  Google Scholar 

  • Kakinuma A, Hori M, Isono M, Tamura G, Arima K (1969a) Determination of amino acid sequence in surfactin, a crystalline peptidolipid surfactant produced by Bacillus subtilis. Agric Biol Chem 33:971–972. doi:10.1271/bbb1961.33.971

    Article  CAS  Google Scholar 

  • Kakinuma A, Sugino H, Isono M, Tamura G, Arima K (1969b) Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric Biol Chem 33:973–976. doi:10.1080/00021369.1969.10859409

    Article  CAS  Google Scholar 

  • Kalia VC, Kumar P, Pandian SK, Sharma P (2015) Biofouling control by quorum quenching. In: Kim SK (ed) Handbook of marine biotechnology. Springer, Berlin, pp 431–440. doi:10.1007/978-3-642-53971-8_15, isbn:978-3-642-53970-1

  • Kaplan N, Rosenberg E (1982) Exopolysaccharide distribution and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413. Appl Environ Microbiol 44:1335–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kappeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140:707–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kardena E, Helmy Q, Funamizu N (2015) Biosurfactants and soil bioremediation. In: Kosaric N, Vardar-Sukan F (eds) Biosurfactants, production and utilization-processes, technologies, and economics. CRC, Taylor & Francis, Boca Raton, FL, pp 327–360

    Google Scholar 

  • Keith D, Lai JJ, Govardhan C, Khalaf N (2014) Method for preparing purified lipopeptides. Patent: US8697638 B2

    Google Scholar 

  • Khan MSA, Singh B, Cameotra SS (2015) Biological applications of biosurfactants and strategies to potentiate commercial production. In: Kosaric N, Vardar-Sukan F (eds) Biosurfactants, production and utilization-processes, technologies, and economics. CRC, Taylor & Francis, Boca Raton, FL, pp 270–294

    Google Scholar 

  • Kim DH, Miler RM, Rasmussen SL, Stanghellini MR, Zhang Y (1997) Microbially produced rhamnolipids (biosurfactants) for the control of plant pathogenic zoosporic fungi. Patent: US1997/000701

    Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145. doi:10.4014/jmb.0905.05007

    CAS  PubMed  Google Scholar 

  • King JW, Srinivas K, Zhang D (2010) Advances in critical fluid processing. In: Proctor A (ed) Alternatives to conventional food processing. Royal Society of Chemistry, London

    Google Scholar 

  • Knothe G, Steidley KR (2009) A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel. Bioresour Technol 100:5796–5801. doi:10.1016/j.biortech.2008.11.064

    Article  CAS  PubMed  Google Scholar 

  • Kourmentza C, Ntaikou I, Lyberatos G, Kornaros M (2015) Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Int J Biol Macromol 74:202–210. doi:10.1016/j.ijbiomac.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  • Kralova I, Sjöblom J (2009) Surfactants used in food industry: a review. J Dispers Sci Technol 30:1363–1383. doi:10.1080/01932690902735561

    Article  CAS  Google Scholar 

  • Krohn M, Zinke H (2011) Cyclic lipopeptides for use as taste modulators. Patent: 20110256291

    Google Scholar 

  • Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107:546–556. doi:10.1111/j.1365-2672.2009.04244.x

    Article  CAS  PubMed  Google Scholar 

  • Kügler JH, Muhle-Goll C, Kühl B, Kraft A, Heinzler R, Kirschhofer F, Henkel M, Wray C, Luy B, Brebber-Weiss G, Lang S, Syldatk C, Hausmann R (2014) Trehalose lipid biosurfactant produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Appl Microbiol Biotechnol 98:8905–8915. doi:10.1007/s00253-014-5972-4

    Article  PubMed  CAS  Google Scholar 

  • Kumari B, Singh SN, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem 47:2463–2471. doi:10.1016/j.procbio.2012.10.010

    Article  CAS  Google Scholar 

  • Kuppert D, Kottke U, Lattich J, Volk M, Wenk HH, Cabirol F, Schilling M, Schaffer S, Allef P (2014) Detergent formulation for textiles, comprising rhamnolipids with a predominant content of di-rhamnolipids. Patent: 20140296125 A1

    Google Scholar 

  • Kurtzman CP, Price NP, Ray KJ, Kuo TM (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146. doi:10.1111/j.1574-6968.2010.02082.x

    Article  CAS  PubMed  Google Scholar 

  • Lan G, Fan Q, Liu Y, Chen C, Li G, Liu Y, Yin X (2015) Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochem Eng J 101:44–54. doi:10.1016/j.bej.2015.05.001

    Article  CAS  Google Scholar 

  • Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid 7:12–20. doi:10.1016/S1359-0294(02)00007-9

    Article  CAS  Google Scholar 

  • Lang S, Katsiwela E, Wagner F (1989) Antimicrobial effects of biosurfactants. Lipid/Fett 91:363–366. doi:10.1002/lipi.19890910908

    Article  CAS  Google Scholar 

  • Lindoerfer W, Sewe KU, Oberbremer A, Mueller-Hurtig R, Wagner F (1992) Microbial decontamination of soils contaminated with hydrocarbons, in particular mineral oils by microbial oxidation. Patent: US5128262 A

    Google Scholar 

  • Loiseau C, Schlusselhuber M, Bigot R, Bertaux J, Berjeaud J, Verdon J (2015) Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity. Appl Microbiol Biotechnol 99:5083–5093. doi:10.1007/s00253-014-6317-z

    Article  CAS  PubMed  Google Scholar 

  • Lopes SC, Rodrigues JM (2003) Immunogenic compositions containing antigens, gene vectors and adjuvants-loaded biodegradable microspheres. Patent: WO2001007869 A2

    Google Scholar 

  • Lu JR, Zhao XB, Yaseen M (2007) Biomimetic amphiphiles: biosurfactants. Curr Opin Colloid Interface Sci 12:60–67. doi:10.1016/j.cocis.2007.05.004

    Article  CAS  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Rodrigues LR, Teixeira JA, de Campos-Takaki GM (2011) Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995. Curr Microbiol 62:1527–1534. doi:10.1007/s00284-011-9889-1

    Article  CAS  PubMed  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterization, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Coll Surf B Biointerfaces 102:202–209. doi:10.1016/j.colsurfb.2012.08.008

    Article  CAS  Google Scholar 

  • Ma X-J, Li H, Wang D-X, Song X (2014) Sophorolipid production from delignined corncob residue by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576 and Cryptococcus curvatus ATCC 96219. Appl Microbiol Biotechnol 98:475–483. doi:10.1007/s00253-013-4856-3

    Article  CAS  PubMed  Google Scholar 

  • Maass D, Ramírez IM, Román MG, Alameda EJ, de Souza AAU, Valle JAB, Vaz DA (2016) Two-phase olive mill waste (alpeorujo) as carbon source for biosurfactant production. J Chem Technol Biotechnol 91:1990–1997. doi:10.1002/jctb.4790

  • Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29:138–142. doi:10.1016/j.foodcont.2012.06.009

    Article  CAS  Google Scholar 

  • Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633. doi:10.1007/s002530000443

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. JAOCS 74:887–889. doi:10.1007/s11746-997-0233-7

    CAS  Google Scholar 

  • Manoharan MJ, Bradeeba K, Parthasarathi R (2012) Development of surfactin based nanoemulsion formulation from selected cooking oils: evaluation for antimicrobial activity against selected food associated microorganisms. J Taiwan Inst Chem E 43:172–180. doi:10.1016/j.jtice.2011.08.008

    Article  CAS  Google Scholar 

  • Marchant R, Banat IM (2012a) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605. doi:10.1007/s10529-012-0956-x

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Banat IM (2012b) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565. doi:10.1016/j.tibtech.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Funston S, Uzoigwe C, Rahman PKSM, Banat IM (2015) Production of biosurfactants from nonpathogenic bacteria. In: Kosaric N, Vardar-Sukan F (eds) Biosurfactants, production and utilization-processes, technologies, and economics. CRC, Taylor & Francis, Boca Raton, FL, pp 73–82

    Google Scholar 

  • Mariano AP, Bonotto DM, Angelis DF, Pirôllo MPS, Contiero J (2008) Use of weathered diesel oil as a low-cost raw material for biosurfactant production. Braz J Chem Eng 25:269–274. doi:10.1590/S0104-66322008000200006

    Article  CAS  Google Scholar 

  • Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117. doi:10.1016/j.chemphyslip.2009.01.001

    Article  PubMed  CAS  Google Scholar 

  • Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MAM (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123. doi:10.1016/j.ijbiomac.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama T, Murakami T, Fujita M, Fujita S, Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J Gen Microbiol 132:865–875. doi:10.1099/00221287-132-4-865

    CAS  Google Scholar 

  • McInerney MJ, Javaheri M, Nagle DP (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol 5:95–102. doi:10.1007/BF01573858

    Article  CAS  PubMed  Google Scholar 

  • Mimee B, Pelletier R, Bélanger RR (2009) In vitro antibacterial activity and antifungal mode of action of flocculosin, a membrane-active cellobiose lipid. J Appl Microbiol 107:989–996. doi:10.1111/j.1365-2672.2009.04280.x

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007) Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a Basidiomycete yeast, Pseudozyma antarctica JCM 10317T. J Biosci Bioeng 104:78–81. doi:10.1263/jbb.104.78

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI (2014) Brewer’s spent grain: a valuable feedstock for industrial applications. J Sci Food Agric 94:1264–1275. doi:10.1002/jsfa.6486

    Article  CAS  PubMed  Google Scholar 

  • Narayanan J, Ramji R, Sahu H, Gautam P (2010) Synthesis, stabilisation and characterisation of rhamnolipid-capped ZnS nanoparticles in aqueous medium. IET Nanobiotechnol 4:29–34. doi:10.1049/iet-nbt.2009.0010

    Article  CAS  PubMed  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navon-Venezia S, Banin E, Ron EZ, Rosenberg E (1998) The bioemulsifier alasan: role of protein in maintaining structure and activity. Appl Microbiol Biotechnol 49:382–384. doi:10.1007/s002530051186

    Article  CAS  Google Scholar 

  • Nero MD (2007) Systems and methods for spot cleaning materials. Patent: US7291585 B2

    Google Scholar 

  • Nerurkar AS (2010) Structural and molecular characteristics of lichenysin and its relationship with surface activity. In: Sen R (ed) Biosurfactants, Advances in experimental medicine and biology, vol 672. Springer, New York, pp 304–315

    Chapter  Google Scholar 

  • Neu TR, Poralla K (1990) Emulsifying agent from bacteria isolated during screening for cells with hydrophobic surfaces. Appl Microbiol Biotechnol 32:521–525. doi:10.1007/BF00173721

    CAS  Google Scholar 

  • Ngai AL, Bourque MR, Lupinacci RJ, Strohmaier KM, Kartsonis NA (2011) Overview of safety experience with caspofungin in clinical trials conducted over the first 15 years: a brief report. Int J Antimicrob Agents 38:540–544. doi:10.1016/j.ijantimicag.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Costa SG (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259. doi:10.1016/j.tifs.2007.01.002

    Article  CAS  Google Scholar 

  • Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol 112:163–172. doi:10.1016/j.biortech.2006.12.010

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, SGVAO C, Haddad R, LAG G, Eberlin MN, Contiero J (2005) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21:1562–1566. doi:10.1021/bp050198x

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Araújo LV, Costa SGVAO, Pires RC, Zeraik AE, Fernandes ACLB, Freire DMG, Contiero J (2009) Surfactin reduces the adhesion of food-borne pathogenic bacteria to solid surfaces. Lett Appl Microbiol 49:241–247. doi:10.1111/j.1472-765X.2009.02646.x

    Article  CAS  PubMed  Google Scholar 

  • Noah KS, Fox SL, Bruhn DF, Thompson DN, Bala GA (2002) Development of continuous surfactin production from potato process effluent by Bacillus subtilis in an airlift reactor. Appl Biochem Biotechnol 98-100:803–813. doi:10.1385/ABAB:98-100:1-9:803

    Article  CAS  PubMed  Google Scholar 

  • Noah KS, Bruhn DF, Bala GA (2005) Surfactin production from potato process effluent by Bacillus subtilis in a chemostat. Appl Biochem Biotechnol 121-124:465–473. doi:10.1385/ABAB:122:1-3:0465

    Article  CAS  PubMed  Google Scholar 

  • Noparat P, Maneerat S, Saimmai A (2014) Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3. World J Microbiol Biotechnol 30:865–877. doi:10.1007/s11274-013-1493-z

    Article  CAS  PubMed  Google Scholar 

  • Ojha AK, Yang Y, Zhang P (2013) Use of Mycobacterium smegmatis trehalose dimycolate hydrolase. Patent: US20130323224

    Google Scholar 

  • Oliveira FJS, Vazquez L, de Campos NP, de Franca FP (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44(4):383–389. doi:10.1016/j.procbio.2008.11.014

    Article  CAS  Google Scholar 

  • Oliveira DWF, França ÍWL, Félix AKN, Martins JJL, Giro MEA, Melob VMM, Gonçalves LRB (2013) Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf B Biointerfaces 101:34–43. doi:10.1016/j.colsurfb.2012.06.011

    Article  PubMed  CAS  Google Scholar 

  • Onbasli D, Aslim B (2009) Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J Environ Biol 30:161–163

    CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090. doi:10.1111/j.1462-2920.2006.01202.x

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Kim Y (2009) Surfactin inhibits immunostimulatory function of macrophages through blocking NK-κB, MAPK and Akt pathway. Int Immunopharmacol 9:886–893. doi:10.1016/j.intimp.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  • Parry AJ, Parry NJ, Peilow AC, Stevenson PS (2012) Detergent compositions comprising biosurfactant and lipase. Patent: WO2012010407 A1

    Google Scholar 

  • Parry AJ, Parry NL, Peilow AC, Stevenson PS (2013) Combinations of rhamnolipids and enzymes for improved cleaning. Patent: WO2012010406 A1

    Google Scholar 

  • Partovi M, Lotfabad TB, Roostaazad R, Bahmaei M, Tayyebi S (2013) Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01. World J Microbiol Biotechnol 29:1039–1047. doi:10.1007/s11274-013-1267-7

    Article  CAS  PubMed  Google Scholar 

  • Patel RM, Desai AJ (2003) Biosurfactant production by Pseudomonas aeruginosaGS3 from molasses. Lett Appl Microbiol 25:91–94. doi:10.1046/j.1472-765X.1997.00172.x

    Article  Google Scholar 

  • Pecci Y, Rivardo F, Martinotti MG, Allegrone G (2010) LC/ESI-MS/ MS characterization of lipopeptide biosurfactants produced by Bacillus licheniformis V9T14 strain. J Mass Spectrom 45:772–778. doi:10.1002/jms.1767

    Article  CAS  PubMed  Google Scholar 

  • Pesce L (2002) A biotechnological method for the regeneration of hydrocarbons from dregs and muds, on the base of biosurfactants. World patent 02/062495

    Google Scholar 

  • Piljac G, Piljac V (1995) Pharmaceutical preparation based on rhamnolipid. Patent: US5455232 A

    Google Scholar 

  • Pradel E, Zhang E, Pujol N, Matsuyama T, Bargmann CI, Ewbank JJ (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci USA 104:2295–2300. doi:10.1073/pnas.0610281104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PubChem Compound Database. http://www.ncbi.nlm.nih.gov/pccompound/, accessed on October 2015

  • Raaijmakers JM, de Bruijn I, de Kock MJ (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19:699–710. doi:10.1094/MPMI-19-0699

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan N, Kavitha V, Madhavacharyulu E, Gnanamani A, Mandal AB (2011) Isolation, production and characterization of bioemulsifiers of marine bacteria of coastal Tamil Nadu. Indian J Geo Mar Sci 40:76–82

    CAS  Google Scholar 

  • Rafiqul ISM, Sakinah AMM (2013) Processes for the production of xylitol—a review. Food Rev Int 29:127–156. doi:10.1080/87559129.2012.714434

    Article  CAS  Google Scholar 

  • Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications—a review. Bioresour Technol 98:2000–2009. doi:10.1016/j.biortech.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  • Ramírez IM, Tsaousi K, Rudden M, Marchant R, Jurado AE, García RM, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol 198:231–236. doi:10.1016/j.biortech.2015.09.012

    Article  CAS  Google Scholar 

  • Randhawa KKS, Rahman PKSM (2014) Rhamnolipid biosurfactants—past, present, and future scenario of global market. Front Microbiol 5:454. doi:10.3389/fmicb.2014.00454

    Google Scholar 

  • Reddy AS, Chen C, Chen C, Jean J, Fan C, Chen H, Wang J, Nimje VR (2009a) Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J Nanosci Nanotechnol 9:6693–6699. doi:10.1166/jnn.2009.1347

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Chen C, Baker SC, Chen C, Jean J, Fan C, Chen H, Wang J (2009b) Synthesis of silver nanoparticles using surfactin: a biosurfactant as stabilizing agent. Mater Lett 63:1227–1230. doi:10.1016/j.matlet.2009.02.028

    Article  CAS  Google Scholar 

  • Rhamnopharma Inc. USA (2013) Method for treating rhinitis and sinusitis by rhamnolipids. Patent: US20140080771 A1

    Google Scholar 

  • Rivardo F, Martinotti MG, Turner RJ, Ceri H (2011) Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. Int J Antimicrob Agents 37:324–331. doi:10.1016/j.ijantimicag.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  • Rocha MVP, Oliveira AHS, Souza MCM, Gonçalves LRB (2006) Natural cashew apple juice as fermentation medium for biosurfactant production by Acinetobacter calcoaceticus. World J Microbiol Biotechnol 22:1295–1299. doi:10.1007/s11274-006-9175-8

    Article  CAS  Google Scholar 

  • Rocha MV, Souza MC, Benedicto SC, Bezerra MS, Macedo GR, Pinto GA, Gonçalves LR (2007) Production of biosurfactant by Pseudomonas aeruginosa grown on cashew apple juice. Appl Biochem Biotechnol 137–140:185–194. doi:10.1007/s12010-007-9050-6

    PubMed  Google Scholar 

  • Rocha MVP, Barreto RVG, Melo VMM, Gonçalves LRB (2009) Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008. Appl Biochem Biotechnol 155:366–378. doi:10.1007/s12010-008-8459-x

    Article  CAS  Google Scholar 

  • Rosenberg E (1986) Microbial surfactants. CRC Crit Rev Biotechnol 3:109–132. doi:10.3109/07388558509150781

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1990) Bacterial process for the production of dispersants. Patent: US4921793 A

    Google Scholar 

  • Rosenberg E, Ron EZ (1998) Bioemulsifiers. Patent: US5840547 A

    Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Rubinovitz C, Legmann R, Ron EZ (1988) Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 54:323–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rufino RD, Sarubbo LA, Campos-Takaki GM (2007) Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 23:729–734. doi:10.1007/s11274-006-9278-2

    Article  CAS  Google Scholar 

  • Rufino RD, Luna JM, Takaki GMC, Sarubbo LA (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol 17:34–38. doi:10.1016/j.ejbt.2013.12.006

    Article  CAS  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016. doi:10.1007/s00253-012-4641-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini HS, Barragan-Huerta BE, Lebron-Paler A, Pemberton JE, Vazquez RR, Burns AM, Marron MT, Seliga CJ, Gunatilaka AA, Maier RM (2008) Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9–3 and its physicochemical and biological properties. J Nat Prod 71:1011–1015. doi:10.1021/np800069u

    Article  CAS  PubMed  Google Scholar 

  • Saisa-Ard K, Maneerat S, Saimmai A (2013) Isolation and characterization of biosurfactants-producing bacteria isolated from palm oil industry and evaluation for biosurfactants production using low-cost substrates. J Biotechnol Comput Biol Bionanotechnol 94:275–284. doi:10.5114/bta.2013.46421

    CAS  Google Scholar 

  • Samad A, Zhang J, Chen D, Liang Y (2015) Sophorolipid production from biomass hydrolysates. Appl Biochem Biotechnol 175:2246–2257. doi:10.1007/s12010-014-1425-x

    Article  CAS  PubMed  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Salgueiro AA, Sarubbo LA (2013) Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Petrol Sci Eng 105:43–50. doi:10.1016/j.petrol.2013.03.028

    Article  CAS  Google Scholar 

  • Sawai Pharmaceutical Co., LTD (1991) Trehalose trimycolate and medicinal composition. Patent: EP0261248 B1

    Google Scholar 

  • Schofield MH, Thavasi R, Gross RA (2013) Modified sophorolipids for the inhibition of plant pathogens. Patent: US20130085067 A1

    Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust 34:714–724. doi:10.1016/j.pecs.2008.05.001

    Article  CAS  Google Scholar 

  • Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4100. doi:10.1128/AAC.49.10.4093-4100.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z (2011) Trehalolipids. In: Soberón-Chávez G (ed) Biosurfactants—from genes to applications, Microbiology monographs, vol 20. Springer, Berlin, pp 121–144

    Google Scholar 

  • Sharma S, Verma M, Sharma A (2013) Utilization of non edible oil seed cakes as substrate for growth of Paecilomyces lilacinus and as biopesticide against termites. Waste Biomass Valoriz 4:325–330. doi:10.1007/s12649-012-9134-6

    Article  CAS  Google Scholar 

  • She YH, Zhang F, Xia JJ, Kong S, Wang Z, Shu F, Hu J (2011) Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding. Appl Biochem Biotechnol 163:223–234. doi:10.1007/s12010-010-9032-y

    Article  CAS  PubMed  Google Scholar 

  • Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45:1522–1554. doi:10.1080/10643389.2014.955631

    Article  CAS  Google Scholar 

  • Shepherd R, Rockey J, Shutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40:207–217. doi:10.1016/0168-1656(95)00053-S

    Article  CAS  PubMed  Google Scholar 

  • Sigma Aldrich (Company website). http://www.sigmaaldrich.com/life-science/biochemicals/biochemical-products.html?TablePage=111283763, accessed on October 2015

  • Silva HD, Cerqueira MA, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867. doi:10.1007/s11947-011-0683-7

    Article  CAS  Google Scholar 

  • Silva NMPR, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014a) Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal Agric Biotechnol 3:132–139. doi:10.1016/j.bcab.2013.09.005

    Google Scholar 

  • Silva EJ, Silva NMPR, Rufino RD, Luna JM, Silva RO, Sarubbo LA (2014b) Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids Surf B Biointerfaces 117:36–41. doi:10.1016/j.colsurfb.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  • Simpson DR, Natraj NR, McInerney MJ, Duncan KE (2011) Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl Microbiol Biotechnol 91:1083–1093. doi:10.1007/s00253-011-3326-z

    Article  CAS  PubMed  Google Scholar 

  • Singh BR, Dwivedi S, Al-Khedhairy AA, Musarrat J (2011) Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquefaciens strain KSU-109. Colloids Surf B Biointerfaces 85:207–213. doi:10.1016/j.colsurfb.2011.02.030

    Article  CAS  PubMed  Google Scholar 

  • Singh AM, Rautela R, Cameotra SS (2014) Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb Cell Fact 13:67. doi:10.1186/1475-2859-13-67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC, Sarubbo LA (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Proc Biochem 43:912–917. doi:10.1016/j.procbio.2008.04.013

    Article  CAS  Google Scholar 

  • Solaiman DKY, Ashby RD, Nuñez A, Foglia TA (2004) Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol Lett 26:1241–1245. doi:10.1023/B:BILE.0000036605.80577.30

    Article  CAS  PubMed  Google Scholar 

  • Solaiman DKY, Ashby RD, Zerkowski JA, Foglia TA (2007) Simplified soy molasses-based medium for reduced-cost production of sophorolipids by Candida bombicola. Biotechnol Lett 29:1341–1347. doi:10.1007/s10529-007-9407-5

    Article  CAS  PubMed  Google Scholar 

  • Sousa JR, Correia JAC, Almeida JGL, Rodrigues S, Pessoa ODL, Melo VMM (2011) Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Proc Biochem 46:1831–1839. doi:10.1016/j.procbio.2011.06.016

    Article  CAS  Google Scholar 

  • Su W, Chen W, Lin Y (2009) Optimizing emulsan production of A. venetianus RAG-1 using response surface methodology. Appl Microbiol Biotechnol 84:271–279. doi:10.1007/s00253-009-1957-0

    Article  CAS  PubMed  Google Scholar 

  • Syldatk C, Hausmann R (2010) Microbial biosurfactants. Eur J Lipid Sci Technol 112:615–616. doi:10.1002/ejlt.201000294

    Article  CAS  Google Scholar 

  • Tally FP, Zeckel M, Wasilewski MM, Carini C, Berman CL, Drusano GL, Oleson FB (1999) Daptomycin: a novel agent for Gram-positive infections. Expert Opin Invest Drugs 8:1223–1238. doi:10.1517/13543784.8.8.1223

    Article  CAS  Google Scholar 

  • Tavares LFD, Silva PM, Junqueira M, Mariano DCO, Nogueira FCS, Domont GB, Freire DMG, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921. doi:10.1007/s00253-012-4454-9

    Article  CAS  PubMed  Google Scholar 

  • TechNavio (2015) Global bio-surfactants market 2015-2019, ID:3244038. http://www.researchandmarkets.com/research/bwqrsf/global

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2007) Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Lett Appl Microbiol 45:686–691. doi:10.1111/j.1472-765X.2007.02256.x

    Article  CAS  PubMed  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925. doi:10.1007/s11274-007-9609-y

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372. doi:10.1016/j.biortech.2010.11.071

    Article  CAS  PubMed  Google Scholar 

  • Thavasi R, Marchant R, Banat IM (2015) Biosurfactant applications in agriculture. In: Kosaric N, Vardar-Sukan F (eds) Biosurfactants, production and utilization-processes, technologies, and economics. CRC, Taylor & Francis, Boca Raton, FL, pp 313–325

    Google Scholar 

  • Thompson DN, Fox SL, Bala GA (2000) Biosurfactants from potato process effluents. Appl Biochem Biotechnol 84-86:917–930. doi:10.1385/ABAB:84-86:1-9:917

    Article  CAS  PubMed  Google Scholar 

  • Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuota T, Kitamoto D (2009) Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J Oleo Sci 58:97–102. doi:10.5650/jos.58.97

    Article  CAS  PubMed  Google Scholar 

  • Toren A, Navon-Venezia S, Ron EZ, Rosenberg E (2001) Emulsifying activities of purified alasan proteins from Acinetobacter radioresistens KA53. Appl Environ Microbiol 67:1102–1106. doi:10.1128/AEM.67.3.1102-1106.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toribio J, Escalante AE, Soberon-Chavez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087. doi:10.1002/ejlt.200900256

    Article  CAS  Google Scholar 

  • Towner KJ (1996) Biology of Acinetobacter spp. In: Bergogne-Berezin E, Jily-Guillou ML, Towner KJ (eds) Acinetobacter—microbiology, epidemiology, infections, management. CRC, Boca Raton, FL, pp 13–36

    Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742. doi:10.1111/j.1469-8137.2007.02138.x

    Article  CAS  PubMed  Google Scholar 

  • Transparency Market Research (2012) Biosurfactants market-Global scenario, raw material and consumption trends, industry analysis, size, share and forecasts, 2011-2018. http://www.transparencymarketresearch.com/biosurfactants-market.html

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710. doi:10.1111/j.1365-2672.2007.03680.x

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Misava S, Nakahara T, Tabuchi T (1989a) Factor affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agric Biol Chem 53:765–769. doi:10.1080/00021369.1989.10869386

    CAS  Google Scholar 

  • Uchida Y, Tsuchiya R, Chino M, Hirano J, Tabuchi T (1989b) Extracellular accumulation of mono- and di- succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric Biol Chem 53:757–763. doi:10.1080/00021369.1989.10869385

    CAS  Google Scholar 

  • Unilever Plc. (1992) Detergent compositions. Patent: EP0499434 A1

    Google Scholar 

  • Unilever Plc. (2015) A highly water-soluble solid laundry detergent composition that forms a clear wash liquor upon dissolution in water. Patent: ECLI:EP:BA:2015:T056213.20150624

    Google Scholar 

  • van Bogaert INA, Soetaert W (2011) Sophorolipids. In: Soberón-Chávez G (ed) Biosurfactants—from genes to applications, Microbiology monographs, vol 20. Springer, Berlin, pp 179–210

    Google Scholar 

  • van Haesendonck I, Vanzeveren E (2005) Rhamnolipids in bakery products. Patent: EP1560493 A1

    Google Scholar 

  • Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault J, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32(2):178–193. doi:10.1111/j.1365-3040.2008.01911.x

    Article  CAS  PubMed  Google Scholar 

  • Vasileva-Tonkova E, Sotirova E, Galabova D (2011) The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater. Curr Microbiol 62(2):427–433. doi:10.1007/s00284-010-9725-z

    Article  CAS  PubMed  Google Scholar 

  • Vedaraman N, Venkatesh N (2011) Production of surfactin by Bacillus subtilis MTCC 2423 from waste frying oils. Braz J Chem Eng 28:175–180. doi:10.1590/S0104-66322011000200001

    Article  CAS  Google Scholar 

  • Volke F, Meiche J (2005) Coupling medium for transversal ultrasonic waves. Patent: US6899677 B1

    Google Scholar 

  • Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297. doi:10.1006/biol.1997.0099

    Article  CAS  PubMed  Google Scholar 

  • Wadekar S, Kale S, Lali A, Bhowmick D, Pratap A (2012) Sophorolipid production by Starmerella bombicola (ATCC 22214) from virgin and waste frying oils, and the effects of activated earth treatment of the waste oils. J Am Oil Chem Soc 89:1029–1039. doi:10.1007/s11746-011-1986-6

    Article  CAS  Google Scholar 

  • Wattanaphon HT, Kerdsin A, Thammacharoen C, Sangvanich P, Vangnai AS (2008) A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J Appl Microbiol 105:416–423. doi:10.1111/j.1365-2672.2008.03755.x

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SG, Galbraith L (1975) Studies on lipopolysaccharides from Pseudomonas aeruginosa. Eur J Biochem 52:331–343. doi:10.1111/j.1432-1033.1975.tb04001.x

    Article  CAS  PubMed  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Muller C, Wichmann R, Kupper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80. doi:10.1186/1475-2859-10-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worakitsiri P, Pornsunthorntawee O, Thanpitcha T, Chavadej S, Weder C, Rujiravanit R (2011) Synthesis of polyaniline nanofibers and nanotubes via rhamnolipid biosurfactant templating. Synthetic Met 161:298–306. doi:10.1016/j.synthmet.2010.11.039

    Article  CAS  Google Scholar 

  • Zeng G, Liu Z, Zhong H, Li J, Yuan X, Fu H, Ding Y, Wang J, Zhou M (2011) Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Appl Microbiol Biotechnol 90:1155–1161. doi:10.1007/s00253-011-3125-6

    Article  CAS  PubMed  Google Scholar 

  • Zeraik AN, Nitschke M (2010) Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr Microbiol 61(6):554–559. doi:10.1007/s00284-010-9652-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang JW, Lee SH, Gross RA, Kaplan D (1999) Surface properties of emulsan-analogs. J Chem Technol Biotechnol 74:759–765. doi:10.1002/(SICI)1097-4660(199908)74:8<759::AID-JCTB88>3.0.CO;2-T

    Article  CAS  Google Scholar 

  • Zhang J, Yin R, Lin X, Liu W, Chen R, Li X (2010) Interactive effect of biosurfactant and microorganism to enhance phytoremediation for removal of aged polycyclic aromatic hydrocarbons from contaminated soils. J Health Sci 56:257–266. doi:10.1248/jhs.56.257

    Article  CAS  Google Scholar 

  • Zhang C, Wang S, Yan Y (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour Technol 102:7139–7146. doi:10.1016/j.biortech.2011.03.086

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Wong JWC (2009) Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation. Environ Technol 30:291–299. doi:10.1080/09593330802630801

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Luo Z, Yu L, Huang L, Bai X (2011) The utilization of lipid waste for biosurfactant production and its application in enhancing oil recovery. Petrol Sci Technol 29:282–289. doi:10.1080/10916460903117586

    Article  CAS  Google Scholar 

  • Zosim Z, Guntick D, Rosenberg E (1982) Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol Bioeng 24:281–292. doi:10.1002/bit.260240203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Constantina Kourmentza would like to thank the European Commission for providing support through the FP7-PEOPLE-2013-IEF-Marie-Curie Action: Intra-European Fellowships for Career Development (grant no. 625774). Dr Filomena Freitas acknowledges FCT-MEC for fellowship SFRH/BPD/72280/2010. The authors acknowledge Fundação para a Ciência e Tecnologia, Ministério da Educação e Ciência (FCT-MEC), Portugal, through projects PEst-C/EQB/LA0006/2013 and PEst-OE/AGR/UI0245/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantina Kourmentza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kourmentza, C., Freitas, F., Alves, V., Reis, M.A.M. (2017). Microbial Conversion of Waste and Surplus Materials into High-Value Added Products: The Case of Biosurfactants. In: Kalia, V., Kumar, P. (eds) Microbial Applications Vol.1. Springer, Cham. https://doi.org/10.1007/978-3-319-52666-9_2

Download citation

Publish with us

Policies and ethics