Lamellar Eutectic Growth

  • Jian-Jun Xu
Part of the Springer Series in Synergetics book series (SSSYN)


Eutectic growth in a binary mixture system is another fundamental subject in condensed matter physics and materials science. Unlike systems of cellular growth, the concentration of the two species (A) and (B) in a binary mixture of eutectic growth are moderate and close to the eutectic concentration Ce (see Fig. 11.1).
Fig. 11.1

Sketch of a phase diagram of eutectic growth


  1. 1.
    S. Akamatsu, M. Flapp, G. Faivre, A. Karma, Pattern stability and trijunction motion in eutectic solidification. Phys. Rev. E 66, 030501(R) (2002)Google Scholar
  2. 2.
    S. Akamatsu, S. Bottin-Rousseau, G. Faivre, Determination of the Jackson–Hunt constants of the In–In2Bi eutectic alloy based on in situ observation of its solidification dynamics. Acta Mater. 59, 7586–7591 (2011)CrossRefGoogle Scholar
  3. 3.
    Y.J. Chen, S.H. Davis, Instability of triple junctions in lamellar eutectic growth. Acta Mater. 49, 1363–1372 (2001)CrossRefGoogle Scholar
  4. 4.
    V. Datye, R. Mathur, J.S. Langer, Stability of thin lamellar eutectic growth. Phys. Rev. B 24 (8), 4155–4169 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    S.H. Davis, Theory of Solidification, Chap. 8 (Cambridge University Press, Cambridge, 2001)Google Scholar
  6. 6.
    M. Ginibre, S. Akamatsu, G. Faivre, Experimental determination of the stability diagram of a lamellar eutectic growth front. Phys. Rev. E 56 (1), 780–796 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    K.A. Jackson, J.D. Hunt, Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 1129–1142 (1966)Google Scholar
  8. 8.
    A. Karma, A. Sarkissian, Morphological instabilities of lamellar eutectics. Metall. Mater. Trans. A 27, 635 (1996)CrossRefGoogle Scholar
  9. 9.
    K. Kassne, C. Misbah, Spontaneous parity-breaking transition in directional growth of lamellar eutectic structures. Phys. Rev. A 44 (10), 6533–6543 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    J. Mergy, G. Faivre, C. Guthmann, R. Mellet, Quantitative determination of the physical parameters relevant to the thin-film directional solidification of the CBr4–C2Cl6 eutectic alloy. J. Cryst. Growth 134, 353–368 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    G.E. Nash, A self-sistent theory of steady state lamellar solidification in binary eutectic systems. J. Cryst. Growth 38, 155–180 (1977)ADSCrossRefGoogle Scholar
  12. 12.
    A. Parisi, M. Plapp, Stability of lamellar eutectic growth. Acta Mater. 56, 1348–1357 (2008)CrossRefGoogle Scholar
  13. 13.
    V. Seetharaman, R. Trivedi, Eutectic growth: selection of interlamellar spacings. Metall. Trans. A 19, 2955–2964 (1988)CrossRefGoogle Scholar
  14. 14.
    J.J. Xu, Y.Q. Chen, Steady spatially-periodic eutectic growth with the effect of triple point in directional solidification. Acta Mater. 80, 220–238 (2014)CrossRefGoogle Scholar
  15. 15.
    J.J. Xu, X.M. Li, Y.Q. Chen, Global steady state solutions for lamellar eutectic growth in directional solidification. J. Cryst. Growth 401, 93–98 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jian-Jun Xu
    • 1
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations