Skip to main content

Location Methods and Nash Equilibria for Experimental Design in Astrophysics and Aerospace Engineering

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 118))

Abstract

In this chapter we present a survey of location methods based on Nash equilibria for the design of experiments. The solution of the location problem is given in the bi-dimensional case by means of a potential formulation and a Nash game. The most important definitions and proofs are reported. Two main application fields are employed to stress the capability of an ad hoc numerical methodology involved in the solution of the location problem. The first one refers to optimal (constrained) location of sensors collecting cosmic rays for astrophysics experiments. The second one concerns the design of experiment in aerospace engineering related to set of flight tests within the flight envelope of an airplane. An outlook on location-allocation problem in economics is considered for a linear city with congestion in the conclusions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, J.D.: Introduction to Flight. McGraw-Hill Series in Aeronautical and Aerospace Engineering, 5th edn. McGraw-Hill, New York (2005)

    Google Scholar 

  2. Arnold, R.J., Epstein, C.S.: Store Separation Flight Testing. NATO AGARDograph 300, Flight Test Technique, vol. 5. Neuilly sur Seine, NATO AGARD (1986)

    Google Scholar 

  3. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Classics in Applied Mathematics, vol. 23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1999)

    Google Scholar 

  4. Benabbou, A., Borouchaki, H., Laug, P., Lu, J.: Sphere packing and applications to granular structure modeling. In: Garimella, R.V. (eds.) Proceedings of the 17th International Meshing Roundtable, pp. 1–18, Springer, Berlin/Heidelberg (2008). doi:10.1007/978-3-540-87921-3_1

    Google Scholar 

  5. Clarich, A., Périaux, J., Poloni, C.: Combining game strategies and evolutionary algorithms for CAD parametrization and multi-point optimization of complex aeronautic systems. In: Proceedings of EUROGEN 2003, Barcelona (2003)

    Google Scholar 

  6. Chinchuluun, A., Pardalos, P.M., Huang, H-X.: Multilevel (hierarchical) optimization: complexity issues, optimality conditions, algorithms. In: Gao, D., Sherali, H. (eds.) Advances in Applied Mathematics and Global Optimization, pp. 197–221. Springer, New York (2009). doi:10.1007/978-0-387-75714-8_6

    Chapter  Google Scholar 

  7. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1998). doi:10.1007/978-1-4757-6568-7

    MATH  Google Scholar 

  8. D’Amato, E., Daniele, E., Mallozzi, L., Petrone, G.: Equilibrium strategies via GA to Stackelberg games under multiple follower’s best reply. Int. J. Intell. Syst. 27 (2), 74–85 (2012)

    Article  Google Scholar 

  9. D’Amato, E., Daniele, E., Mallozzi, L., Petrone, G., Tancredi, S.: A hierarchical multi-modal hybrid Stackelberg–Nash GA for a leader with multiple followers game. In: Sorokin, A., Murphey, R., Thai, M.T., Pardalos, P.M. (eds.) Dynamics of Information Systems: Mathematical Foundations, pp. 267–280. Springer, Berlin (2012). doi:10.1007/978-1-4614-3906-6_14

    Chapter  Google Scholar 

  10. D’Amato, E., Daniele, E., Mallozzi, L., Petrone, G.: Three level hierarchical decision making model with GA. Engineering Computations: Int. J. Comput.-Aided Eng. Softw. 31 (6), 1116–1128 (2014). doi:10.1108/EC-03-2012-0075

    Article  Google Scholar 

  11. D’Amato, E., Daniele, E., Mallozzi, L.: Experimental design problems and Nash equilibrium solutions. In: Kalyagin, V., Pardalos, P.M., Rassias, T.M. (eds.) Network Models in Economics and Finance. Springer Optimization and Its Applications, vol. 100, pp. 1–12. Springer, Cham (2014). doi:10.1007/978-3-319-09683-4_1

    Google Scholar 

  12. D’Amato, E., Daniele, E., Mallozzi, L.: A genetic algorithm for a sensor device location problem. In: Greiner, D., Galván, B., Périaux, J., Gauger, N., Giannakoglou, K., Winter, G. (eds.) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, pp. 49–57. Springer, Cham (2015). doi:10.1007/978-3-319-11541-2_3

    Google Scholar 

  13. D’Argenio, A., de Nicola, C., De Paolis, P., Di Francesco, G., Mallozzi, L.: Design of a flight test matrix and dynamic relocation of test points. J. Algorithms Optim. 2, 52–56 (2014)

    Google Scholar 

  14. Dean, A.M., Voss, D.: Design and Analysis of Experiments. Springer, New York (1998). doi:10.1007/b97673

    MATH  Google Scholar 

  15. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001). ISBN:978-0-471-87339-6

    MATH  Google Scholar 

  16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6 (2), 181–197 (2002). doi:10.1109/4235.996017

    Article  Google Scholar 

  17. Donev, A., Torquato, S., Stillinger, F.H., Connelly, R.: A linear programming algorithm to test for jamming in hard-sphere packings. J. Comput. Phys. 197 (1), 139–166. Academic Press Professional, Inc., San Diego (2004). doi:10.1016/j.jcp.2003.11.022

    Google Scholar 

  18. Drezner, Z.: Facility Location – A Survey of Applications and Methods. Springer, New York (1995). ISBN:978-0-387-94545-3

    Book  Google Scholar 

  19. Eiselt, H.A., Marianov, V.: Foundations of Location Analysis. International Series in Operations Research and Management Science, vol. 115. Springer, New York (2011). doi:10.1007/978-1-4419-7572-0

    Google Scholar 

  20. Gevers, M.: Identification for control – from the early achievements to the revival of experiment design. Eur. J. Control 11 (4), 335–352 (2005). doi:10.3166/ejc.11.335-352

    Article  MathSciNet  MATH  Google Scholar 

  21. Giunta, A.A., Balabanov, V., Haim, D., Grossman, B., Mason, W.H., Watson, L.T., Haftka, R.T.: Multidisciplinary optimization of a supersonic transport using design of experiments theory and response surface modeling. Technical Report ncstrl.vatech_cs//TR-97-10, Computer Science, Virginia Polytechnic Institute and State University (1997)

    Google Scholar 

  22. Hales, T.C.: The sphere packing problem. J. Comput. Appl. Math. 44 (1), 41–76 (1992). doi:10.1016/0377-0427(92)90052-Y

    Article  MathSciNet  MATH  Google Scholar 

  23. Mallozzi, L.: Noncooperative facility location games. Oper. Res. Lett. 35 (2), 151–154 (2007). doi:10.1016/j.orl.2006.03.003

    Article  MathSciNet  MATH  Google Scholar 

  24. Mallozzi, L.: An application of optimization theory to the study of equilibria for games: a survey. Cent. Eur. J. Oper. Res. 21 (3), 523–539 (2012). doi:10.1007/s10100-012-0245-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Mallozzi, L., D’Amato, E., Daniele, E.: A planar location-allocation problem with waiting time costs. In: Rassias, T.M., Tóth, L. (eds.) Topics in Mathematical and Applications, pp. 541–556. Springer, Cham (2014) doi:10.1007/978-3-319-06554-0_23

    Google Scholar 

  26. Mallozzi, L., D’Amato, E., Daniele, E.: Location methods in experimental design. In: Pardalos, P.M, Rassias, T.M. (eds.) Mathematics Without Boundaries: Surveys of Interdisciplinary Research, pp. 429–446. Springer, New York (2014). doi:10.1007/978-1-4939-1124-0_14

    Google Scholar 

  27. Mallozzi, L., De Paolis, P., Di Francesco, G., D’Argenio, A.: Computational results for flight test points distribution in the flight envelope. In: Greiner, D., Galván, B., Périaux, J., Gauger, N., Giannakoglou, K., Winter, G. (eds.) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, pp. 401–409. Springer, Cham (2015). doi:10.1007/978-3-319-11541-2_26

    Google Scholar 

  28. Migdalas, A., Pardalos, P.M., V’́arbrand, P. (eds.): Multilevel Optimization: Algorithms and Applications. Springer, New York (1998). doi:10.1007/978-1-4613-0307-7

    Google Scholar 

  29. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14 (1), 124–143 (1996). doi:10.1006/game.1996.0044

    Article  MathSciNet  MATH  Google Scholar 

  30. North Atlantic Treaty Organization, Science and Technology Organization: Aircraft/Store Compatibility, Integration and Separation Testing. STO/NATO AGARDograph 300, Flight Test Technique - vol. 29 (2014). ISBN:978-92-837-0214-6

    Google Scholar 

  31. Nurmela, K.J.: Stochastic optimization methods in sphere packing and covering problems in discrete geometry and coding theory. Ph.D. thesis, Helsinki University of Technology, printed by Picaset Oy, 1997

    Google Scholar 

  32. Periaux, J., Chen, H.Q., Mantel, B., Sefrioui, M., Sui, H.T.: Combining game theory and genetic algorithms with application to DDM-nozzle optimization problems. Finite Elem. Anal. Des. 37 (5), 417–429 (2001). doi:10.1016/S0168-874X(00)00055-X

    Article  MATH  Google Scholar 

  33. Sloane, N.J.A.: The Sphere Packing Problem. 1998 Shannon Lecture, AT&T Shannon Lab, Florham Park, NJ (1998)

    Google Scholar 

  34. Sorokin, A., Pardalos, P.: Dynamics of Information Systems – Algorithmics Approaches. Springer, New York (2013). doi:10.1007/978-1-4614-7582-8

    Google Scholar 

  35. Sutou, A., Dai, Y.: Global optimization approach to unequal sphere packing problems in 3D. J. Optim. Theory Appl. 114 (3), 671–694 (2002). doi:10.1023/A:1016083231326

    Article  MathSciNet  MATH  Google Scholar 

  36. Telford, J.K.: A Brief Introduction to Design of Experiments. Johns Hopkins University, Applied Physics Laboratory, Technical Digest 27 (3), 224–232 (2007)

    Google Scholar 

  37. Wang, J.F., Périaux, J.: Multi-Point optimization using GAS and Nash/Stackelberg games for high lift multi-airfoil design in aerodynamics. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, pp. 552–559 (2001). doi:10.1109/CEC.2001.934440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elia Daniele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Daniele, E., De Paolis, P., Greco, G.L., d’Argenio, A. (2017). Location Methods and Nash Equilibria for Experimental Design in Astrophysics and Aerospace Engineering. In: Mallozzi, L., D'Amato, E., Pardalos, P. (eds) Spatial Interaction Models . Springer Optimization and Its Applications, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-52654-6_4

Download citation

Publish with us

Policies and ethics