Skip to main content

Strategies to Apply Soil Models Directly as Friction Laws in Soil Structure Interactions

  • Chapter
  • First Online:
Holistic Simulation of Geotechnical Installation Processes

Abstract

In this work three different concepts for a direct application of soil models within a frictional contact description are presented. These concepts can be used in conjunction with all different kinds of contact formulations and solution methods. Additionally, all types of plasticity models can be used within these formulations. The advantage of these concepts is shown exemplary in the modeling process of soil-structure interactions where the Ehlers plasticity model for the continuum is now able to describe the soil behavior at the contact surface. The numerical implementation of the new frictional relations is based on the Mortar method and the numerical investigation of a direct shear test shows the reproduction of the typical stress-strain relation of the soil at the contact surface. The work ends with a critical discussion about the different friction formulations and the application of the Ehlers soil model in a direct shear test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastasopoulos, I., Gazetas, G.: Foundation-structure systems over a rupturing normal fault: part II. Analysis of the Kocaeli case histories. Bull. Earthq. Eng. 5, 277–301 (2007)

    Article  Google Scholar 

  2. Casciati, S., Borja, R.: Dynamic FE analysis of South Memnon Colossus including 3D soil-foundation-structure interaction. Comput. Struct. 82, 1719–1736 (2004)

    Article  Google Scholar 

  3. Curnier, A.: A theory of friction. Int. J. Solids Struct. 20, 637–647 (1984)

    Article  MATH  Google Scholar 

  4. Desai, C.S., Siriwardane, H.: Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials. Prentice-Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  5. Desai, C.: Numerical design-analysis for piles in sands. J. Geotechn. Eng. Div. GT6, 613–635 (1974)

    Google Scholar 

  6. Duvaut, G., Lions, J.: Inequalities in Mechanics and Physics. Springer, Heidelberg (1976)

    Book  MATH  Google Scholar 

  7. Ehlers, W.: A single-surface yield function for geomaterials. Arch. Appl. Mech. 65, 246–259 (1995)

    Article  MATH  Google Scholar 

  8. Ehlers, W., Avci, O., Markert, B.: Computation of slope movements initiated by rain-induced shear bands in small-scale tests and in situ. Vadose Zone J. 10(2), 512–525 (2011)

    Article  Google Scholar 

  9. Ehlers, W., Scholz, B.: An inverse algorithm for the identification and the sensitivity analysis of the paramters governing micropolar elasto-plastic granular material. Arch. Appl. Mech. 77, 911–931 (2007)

    Article  MATH  Google Scholar 

  10. Goodman, R., Taylor, R., Brekke, T.: A model for the mechanics of jointed rock. J. Soil Mech. Found. Div. 94, 637–659 (1968)

    Google Scholar 

  11. Gqhaboussi, J., Wilson, E., Isenberg, J.: Finite element for rock joints and interfaces. J. Soil Mech. Found. Div. 10, 833–848 (1973)

    Google Scholar 

  12. Haraldsson, A.: Formulierung und Simulation der Kontaktvorgänge in der Baugrund-Tragwerk-Interaktion. Ph.D. thesis, Universität Hannover, Germany (2003)

    Google Scholar 

  13. Hu, L., Pu, J.: Testing and modeling of soil-structure interfaces. J. Geotech. Geoenviron. Eng. 130, 851–860 (2004)

    Article  Google Scholar 

  14. Kucharski, S., Klimczak, T., Polijaniuk, A., Kaczmarek, J.: Finite-elments model for the contact of rough surfaces. Wear 177, 1–13 (1994)

    Article  Google Scholar 

  15. Michalowski, R., Mroz, Z.: Associated and non-associated sliding rules in contact friction problems. Archieve Mech. 30, 259–276 (1978)

    MATH  Google Scholar 

  16. Parisch, H.: A continuum-based shell theory for non-linear applications. Int. J. Numer. Meth. Eng. 38, 1855–1883 (1995)

    Article  MATH  Google Scholar 

  17. Pei, L., Hyun, S., Molinari, J., Robbins, M.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 53, 2385–2409 (2005)

    Article  MATH  Google Scholar 

  18. Perez-Foguet, A., Rodriguez-Ferran, A., Huerta, A.: Consistent tangnet matrices for substepping schemes. Comput. Methods Appl. Mech. Eng. 190, 4627–4647 (2001)

    Article  MATH  Google Scholar 

  19. Popp, A., Gee, M.W., Wall, W.A.: A finite deformation mortar contact formulation using a primal-dual active set strategy. Int. J. Num. Methods Eng. 79, 1354–1391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Potyondy, J.: Skin friction between various soils and construction materials. Géotechnique 11, 339–353 (1961)

    Article  Google Scholar 

  21. Puso, M.A., Laursen, T.A.: A mortar segment-to-segment contact method for large deformation solid mechanics. Comput. Methods Appl. Mech. Eng. 193, 601–629 (2004)

    Article  MATH  Google Scholar 

  22. Reul, O.: In-situ Messungen und numerische Studien zum Tragverhalten der kombinierten Pfahl-Plattengründungen. Ph.D. thesis, Technischen Hochschule Darmstadt, Germany (2000)

    Google Scholar 

  23. Scholz, B.: Application of a micropolar model to the localization phenomena in granular materials: general model, sensitivity analysis and parameter optimization. Ph.D. thesis, Universität Stuttgart, Germany (2007)

    Google Scholar 

  24. Schoop, H.: Oberflächenorientierte Schalentheorie endlicher Verschiebungen. Ingenieur-Archiv 56, 427–437 (1986)

    Article  MATH  Google Scholar 

  25. Simo, J.: Numerical analysis and simulation of plasticity. In: Handbook of Numerical Analysis, vol. 6. Elsevier Science B.V (1998)

    Google Scholar 

  26. Simo, J., Taylor, R.: Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Eng. 48, 101–118 (1985)

    Article  MATH  Google Scholar 

  27. Sloan, S.: Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int. J. Numer. Meth. Eng. 24, 893–911 (1987)

    Article  MATH  Google Scholar 

  28. Tejchman, J., Wu, W.: Experimental and numerical study of sand-steel interfaces. Int. J. Numer. Anal. Meth. Geomech. 19, 513–536 (1995)

    Article  Google Scholar 

  29. Uesugi, M., Kishida, H., Uchikawa, Y.: Friction between dry sand and concrete under monotonic and repeated loading. Soils Found. 30, 115–128 (1990)

    Article  Google Scholar 

  30. Weißenfels, C.: Contact methods integrating plasticity models with application to soil mechanics. Ph.D. thesis, Universität Hannover, Germany (2013)

    Google Scholar 

  31. Weißenfels, C., Wriggers, P.: A contact layer element for large deformations. Comput. Mech. 50, 873–885 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weißenfels, C., Wriggers, P.: Methods to project plasticity models onto the contact surface applied to soil structure interactions. Comput. Geotech. 65, 187–198 (2015)

    Article  Google Scholar 

  33. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  34. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  35. Wriggers, P., Reinelt, J.: Multi-scale approach for frictional contact of elastomers on rough rigid surfaces. Comput. Methods Appl. Mech. Eng. 198, 1996–2008 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zaman, M., Desai, C., Drumm, E.: Interface model for dynamic soil-structure interaction. J. Geotechn. Eng. 110, 1257–1273 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

This research project is supported by the Deutsche For-schungsgemeinschaft (German Research Foundation) within the research unit 1136: Simulation of Geotechnical Construction Processes with Holistic Consideration of Constitutive Laws in Soils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weißenfels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Weißenfels, C., Harish, A.B., Wriggers, P. (2017). Strategies to Apply Soil Models Directly as Friction Laws in Soil Structure Interactions. In: Triantafyllidis, T. (eds) Holistic Simulation of Geotechnical Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-52590-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52590-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52589-1

  • Online ISBN: 978-3-319-52590-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics