Skip to main content

Simulation of Cyclic Loading Conditions Within Fluid-Saturated Granular Media

  • Chapter
  • First Online:
Holistic Simulation of Geotechnical Installation Processes

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 82))

  • 1044 Accesses

Abstract

In civil engineering, the installation of a reliable foundation is essential for the stability of the emerging structure. Already during the foundation process, a comprehensive survey of the mutual interactions between the preliminary established construction pit and the surrounding soil is indispensable, especially, when building in an existing context. In this regard, drawing our attention to the construction site at the Potsdamer Platz in Berlin, which resides within a nearly fully saturated soil and in the immediate vicinity of existing structures, measurements have revealed significant displacements of the retaining walls during the vibratory installation of the foundation piles via a so-called vibro-injection procedure. Herein, due to the gradual plastic strain accumulation and the small pore-fluid permeability of the granular assembly, the rapid cyclic loading conditions gave rise to a gradual pore-pressure build-up, which degraded the load-bearing capacity of the surrounding soil.

Addressing the simulation of cyclic loading conditions within a fluid-saturated soil, the present contribution proceeds from a multi-phasic continuum-mechanical approach based on the Theory of Porous Media (TPM), where the solid scaffold is described as an elasto-(visco)plastic material incorporating both an isotropic and a kinematic hardening model. The properties of the proposed solid-skeleton description are extensively discussed. Moreover, the model response is compared to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Herein, the stress tensors are interpreted as vectors in the principle stress space.

  2. 2.

    Note that under pure hydrostatic or deviatoric loading, the contributions of the plastic flow in the deviatoric or hydrostatic direction, respectively, are not uniquely defined due to \(\Vert \mathbf {G}^{D}\Vert =0\) and \({G}^{V} =0\), respectively. Consequently, arbitrary projection directions \(\mathbf {N}^{D}\) and \(\mathbf {N}^{V}\) are defined in this case in order to keep the formulation computable. In this case, the scaling factors, \(\zeta ^{V}\) and \( \zeta ^{D}\), do not contribute to the hardening, see (18) and (19), due to vanishing plastic strain rates in the corresponding directions.

  3. 3.

    The sand samples have been provided by the Institute of soil and rock mechanics (Institut für Boden- und Felsmechanik, IBF) of the Karlsruher Institut of Technology (KIT).

References

  1. Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial bauschinger effect. Report No. RD/B/N 731, Central Electricity Generating Board and Berkeley Nuclear Laboratories (CEGB) (1966)

    Google Scholar 

  2. Arslan, U.M.: Zur Frage des elastoplastischen Verformungsverhaltens von Sand. Mitteilungen der Versuchsanstalt für Bodenmechanik und Grundbau 23, TH Darmstadt (1980)

    Google Scholar 

  3. Bauschinger, J.: Über die Veränderung der Elastizitätsgrenze und die Festigkeit des Eisens und Stahls durch Strecken und Quetschen, durch Erwärmen und Abkühlen und durch oftmals wiederholte Beanspruchungen. Mitteilungen aus dem mechanisch-technischem Laboratorium 13, Königlich Bayerische Technische Hochschule München (1886)

    Google Scholar 

  4. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. J. Acoust. Soc. Am. 28, 168–178 (1956)

    Article  Google Scholar 

  5. de Boer, R., Brauns, W.: Kinematic hardening of granular materials. Ingenieur-Archiv 60, 463–480 (1990)

    Article  Google Scholar 

  6. de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 40. Universität-GH-Essen (1986)

    Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  8. Casagrande, D.R.: Characteristics of cohesionless soils affecting the stability of slopes and earth fills. J. Boston Soc. Civil Eng. 23, 13–32 (1936)

    Google Scholar 

  9. Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast 5, 247–302 (1989)

    Article  MATH  Google Scholar 

  10. Chaboche, J.L.: On some modifications of kinematic hardening to improve the description of ratcheting effects. Int. J. Plast 7, 661–678 (1991)

    Article  Google Scholar 

  11. Danne, S., Hettler, A.: Experimental strain response-envelopes of granular materials for monotonous and low-cycle loading processes. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 229–250. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_12

    Chapter  Google Scholar 

  12. Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)

    Google Scholar 

  13. Ehlers, W., Avci, O.: Stress-dependent hardening and failure surfaces of dry sand. Int. J. Numer. Anal. Meth. Geomech. 37, 787–809 (2013)

    Article  Google Scholar 

  14. Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis of partially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)

    Article  MATH  Google Scholar 

  15. Ehlers, W., Karajan, N., Wieners, C.: Parallel 3-d simulation of a biphasic porous media model in spine mechanics. In: Ehlers, W., Karajan, N. (eds.) Proceedings of the 2nd GAMM Seminar on Continuum Biomechanics, pp. 11–20. Report No. II-16 of the Institute of Applied Mechanics (CE), University of Stuttgart (2007)

    Google Scholar 

  16. Ehlers, W.: Poröse Medien - ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Habilitation Thesis, Forschungsberichte aus dem Fachbereich Bauwesen, Heft 47, Universität-GH-Essen (1989)

    Google Scholar 

  17. Ehlers, W.: A single-surface yield function. Arch. Appl. Mech. 65, 246–259 (1995)

    Article  MATH  Google Scholar 

  18. Ehlers, W.: Challanges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1, 1–24 (2009)

    Article  Google Scholar 

  19. Ehlers, W., Schenke, M., Markert, B.: Simulation of soils under rapid cyclic loading conditions. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 207–228. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_11

    Chapter  Google Scholar 

  20. Ehlers, W., Scholz, B.: An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material. Arch. Appl. Mech. 77, 911–931 (2007)

    Article  MATH  Google Scholar 

  21. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme pröser Medien. Dissertation Thesis, Report No. II-3 of the Institute of Applied Mechanics (CE), University of Stuttgart (1999)

    Google Scholar 

  22. Heider, Y., Avci, O., Markert, B., Ehlers, W.: The dynamic response of fluid-saturated porous materials with application to seismically induced soil liquefaction. Soil Dyn. Earthq. Eng. 63, 120–137 (2014)

    Article  Google Scholar 

  23. Iwan, W.D.: On a class of models for the yielding behavior of continuous and composite systems. ASME J. Appl. Mech. 34, 612–617 (1967)

    Article  Google Scholar 

  24. Jirásek, M., Bažant, Z.P.: Inelastic Analysis of Structures. Wiley, New York (2002)

    Google Scholar 

  25. Ko, H., Scott, R.F.: Deformation of sand in shear. J. Soil Mech. Found. Div. 93, 283–310 (1967)

    Google Scholar 

  26. Lade, P.V., Duncan, J.M.: Cubical triaxial tests on cohesionless soil. ASCE J. Soil Mech. Found. Div. 99, 793–812 (1973)

    Google Scholar 

  27. Manzari, M.T., Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Geotechnique 47, 255–272 (1997)

    Article  Google Scholar 

  28. Meggiolaro, M.A., Castro, J.T.P., Wu, H.: On the applicability of multi-surface, two-surface and non-linear kinematic hardening models in multiaxial fatigue. Frattura ed Integritá Struttura 33, 357–367 (2015)

    Google Scholar 

  29. Mróz, Z.: An attempt to describe the behavior of metals under cyclic loads using a more general workhardening model. Acta Mech. 7, 199–212 (1969)

    Article  Google Scholar 

  30. Mróz, Z.: On the description of anisotropic workhardening. J. Mech. Phys. Solids 15, 163–175 (1967)

    Article  Google Scholar 

  31. Ohno, N., Wang, J.D.: Kinematic hardening rules with critical state dynamic recovery, part ll - application to experiments of ratcheting behavior. Int. J. Plast 9, 391–403 (1991)

    Article  Google Scholar 

  32. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

    Article  Google Scholar 

  33. Prévost, J.H.: Nonlinear transient phenomena in soil media. Mech. Eng. Mater. 30, 3–18 (1982)

    MATH  Google Scholar 

  34. Roscoe, K.H., Burland, J.B.: On the generalized stress-strain behaviour of wet clay. In: Engineering Plasticity, pp. 535–609. Cambridge University Press, Cambridge (1968)

    Google Scholar 

  35. Santamarina, J., Klein, K.A., Fam, M.A.: Soils and Waves. Wiley, Chichester (2001)

    Google Scholar 

  36. Schenke, M., Ehlers, W.: Parallel solution of volume-coupled multi-field problems using an abaqus-pandas software interface. Proc. Appl. Math. Mech. 15, 419–420 (2015)

    Article  Google Scholar 

  37. Schofield, A.N., Wroth., C.P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)

    Google Scholar 

  38. Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Meth. Eng. 22, 649–670 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Spellucci, P.: Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  40. Spellucci, P.: A new technique for inconsistent QP problems in the SQP-method. Math. Methods Oper. Res. 47, 335–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wichtmann, T., Niemunis, A., Triantafyllidis, T.: Strain accumulation in sand due to cyclic loading: drained triaxial tests. Soil Dyn. Earthq. Eng. 25, 967–979 (2005)

    Article  Google Scholar 

  42. Wichtmann, T., Triantafyllidis, T.: Behaviour of granular soils under environmental induced cyclic loads. In: Di Prisco, C., Wood, D.M. (eds.) Mechanical Behaviour of Soils Under Environmentally-Induced Cyclic Loads, pp. 1–136. Springer, Wien (2012)

    Google Scholar 

  43. Yamada, Y., Ishihara, K.: Anisotropic deformation charateristics of sand under three dimensional stress conditions. Soils Found. 19, 79–94 (1979)

    Article  Google Scholar 

  44. Zienkiewicz, O.C., Bettes, P.: Soil Mechanics - Transient and Cyclic Loads. Wiley, Chichester (1982)

    Google Scholar 

  45. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics with Special Reference to Earthquake. Wiley, Chichester (2001)

    MATH  Google Scholar 

  46. Zienkiewicz, O.C., Chang, C.T., Hinton, E.: Non-linear seismic response and liquefaction. Int. J. Numer. Anal. Meth. Geomech. 2, 381–404 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Schenke .

Editor information

Editors and Affiliations

Appendices

Appendix A: Material Parameters of the IH Model

Fig. 10.
figure 10

Microscopic picture of the soil grains (left) and grain size distribution (right) of the sand of the research unit FOR1136.

Following the DIN 18196 of the German Institute for Standardisation, the underlying granular material, in particular, the sandFootnote 3 of the research unit FOR 1136 “GeoTech”, can be classified as closely graded sand with an average grain diameter of \(d_{50}=0.55\,\mathrm{mm}\), see Fig. 10. The density of an individual soil grain, which corresponds to the realistic solid density of the overall aggregate, is \(\rho ^{SR}=2\,650\,\mathrm{kg/m^{2}}\).

Fig. 11.
figure 11

Comparison of the experimental data with the simulation results of the triaxial tests at different confining pressures (left) and of the isotropic loading-unloading loop (right).

Table 1. Material parameters of the solid skeleton of the sand of the research unit FOR1136.
Table 2. Material-parameter adjustments of the solid skeleton for the mixed isotropic-kinematic hardening (IKH) model.

In order to identify the solid-skeleton material parameters associated with the FOR1136 sand, the course of actions as described in [13] is followed. Herein, initially several triaxial tests on cylindrical sand specimens (height: \(0.1\,\mathrm{m}\), diameter: \(0.1\,\mathrm{m}\)) have been carried out, from which, subsequently, the materials parameters are identified through a staggered identification scheme, In particular, at first, the elastic shear modulus \(\mu _S\) is determined straightforward from triaxial loading-unloading loops and the compression-extension-ratio parameter \(\overset{*}{\gamma }\) of the failure surface is found from compression and extension experiments at different confining pressures. Subsequently, several triaxial tests at different confining pressure, in particular, \(\sigma _{c,1}=0.1\,\mathrm{MPa}\), \(\sigma _{c,2}=0.2\,\mathrm{MPa}\) and \(\sigma _{c,3}=0.3\,\mathrm{MPa}\), have been carried out, where the axial \(\sigma _{a}\) and radial stresses \(\sigma _{r}\), the axial strain \(\varepsilon _{a}\), and the volumetric strain \(\varepsilon ^{V}\) have been recorded. The material parameters are then found through a minimisation of the squared error between simulation and experiment, which is known as Least-Squares optimisation method. In particular, a gradient-based constrained optimisation is used, in which the Hessean matrix is approximated through the BGFS (Broyden, Fletcher, Goldfarb, Shannon) procedure, see e. g. [39], and the parameter constraints are considered via the sequential-quadratic-programming (SQP) technique, see [40]. The identified solid-skeleton material parameters of the research-unit sand FOR 1136 are summarised in Table 1.

A comparison between the simulation and the experiments for the triaxial experiments at different confining pressures and for the isotropic compression test are depicted in Fig. 11. As can been seen, the model responses are in a quite good agreement with the experimental observations.

Appendix B: Material Parameters of the IKH Model

Proceeding from the material constants of the pure isotropic hardening (IH) model, see Table 1, the governing parameters of the mixed isotropic-kinematic hardening (IKH) model are guessed and the adjustments according to Table 2 are made.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ehlers, W., Schenke, M., Markert, B. (2017). Simulation of Cyclic Loading Conditions Within Fluid-Saturated Granular Media. In: Triantafyllidis, T. (eds) Holistic Simulation of Geotechnical Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-52590-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52590-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52589-1

  • Online ISBN: 978-3-319-52590-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics