Skip to main content

AdS/CFT and Tensor Networks

  • Chapter
  • First Online:
Holographic Entanglement Entropy

Part of the book series: Lecture Notes in Physics ((LNP,volume 931))

Abstract

To round off our discussion, let us finally describe an interesting method of geometrically representing quantum entanglement in a many-body system. The scheme of ideas goes under the name of tensor networks, which captures broadly a variety of ways to describe wavefunctions of many-body systems in terms of tensors, which are strung together diagrammatically into a tree graph network structure. The tensors themselves encode the variational parameters used to optimally represent ground states of local Hamiltonians. We will be especially interested in a class of tensor networks which capture quantum critical points (or CFTs), called the multi-scale entanglement renormalization ansatz (MERA) [255].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Swingle, Entanglement renormalization and holography. Phys. Rev. D86, 065007 (2012). arXiv:0905.1317 [cond-mat.str-el]

    Google Scholar 

  2. T. Hartman, J. Maldacena, Time evolution of entanglement entropy from black hole interiors. J. High Energy Phys. 1305, 014 (2013). arXiv:1303.1080 [hep-th]

    Google Scholar 

  3. A. Mollabashi, M. Nozaki, S. Ryu, T. Takayanagi, Holographic geometry of cMERA for quantum quenches and finite temperature. J. High Energy Phys. 1403, 098 (2014). arXiv:1311.6095 [hep-th]

    Google Scholar 

  4. M. Miyaji, S. Ryu, T. Takayanagi, X. Wen, Boundary states as holographic duals of trivial spacetimes. J. High Energy Phys. 05, 152 (2015). arXiv:1412.6226 [hep-th]

    Google Scholar 

  5. P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, Z. Yang, Holographic duality from random tensor networks (2016). arXiv:1601.01694 [hep-th]

    Google Scholar 

  6. A. Almheiri, X. Dong, D. Harlow, Bulk locality and quantum error correction in AdS/CFT. J. High Energy Phys. 04, 163 (2015). arXiv:1411.7041 [hep-th]

    Google Scholar 

  7. F. Pastawski, B. Yoshida, D. Harlow, J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 06, 149 (2015). arXiv:1503.06237 [hep-th]

    Google Scholar 

  8. G. Vidal, Entanglement renormalization. Phys. Rev. Lett. 99 (22), 220405 (2007). arXiv:cond-mat/0512165 [cond-mat]

    Google Scholar 

  9. J.I. Cirac, F. Verstraete, Renormalization and tensor product states in spin chains and lattices. J. Phys. A Math. Gen. 42, 4004 (2009). arXiv:0910.1130 [cond-mat.str-el]

    Google Scholar 

  10. S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  ADS  Google Scholar 

  11. F. Verstraete, J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions (2004). arXiv:cond-mat/0407066 [cond-mat]

    Google Scholar 

  12. T. Nishino, K. Okunishi, A density matrix algorithm for 3D classical models. J. Phys. Soc. Jpn. 67, 3066 (1998). cond-mat/9804134

    Google Scholar 

  13. G. Vidal, Entanglement renormalization: an introduction. ArXiv e-prints (2009). arXiv:0912.1651 [cond-mat.str-el]

    Google Scholar 

  14. G. Evenbly, S.R. White, Entanglement renormalization and wavelets. Phys. Rev. Lett. 116 (14), 140403 (2016). arXiv:1602.01166 [cond-mat.str-el]

    Google Scholar 

  15. B. Swingle, Constructing holographic spacetimes using entanglement renormalization (2012). arXiv:1209.3304 [hep-th]

    Google Scholar 

  16. C. Beny, Causal structure of the entanglement renormalization ansatz. N. J. Phys. 15, 023020 (2013). arXiv:1110.4872 [quant-ph]

    Google Scholar 

  17. B. Czech, L. Lamprou, S. McCandlish, J. Sully, Integral geometry and holography. J. High Energy Phys. 10, 175 (2015). arXiv:1505.05515 [hep-th]

    Google Scholar 

  18. B. Czech, L. Lamprou, S. McCandlish, J. Sully, Tensor networks from kinematic space. J. High Energy Phys. 07, 100 (2016). arXiv:1512.01548 [hep-th]

    Google Scholar 

  19. N. Bao, C. Cao, S.M. Carroll, A. Chatwin-Davies, N. Hunter-Jones, J. Pollack, G.N. Remmen, Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence. Phys. Rev. D91 (12), 125036 (2015). arXiv:1504.06632 [hep-th]

    Google Scholar 

  20. Z. Yang, P. Hayden, X.-L. Qi, Bidirectional holographic codes and sub-AdS locality (2015). arXiv:1510.03784 [hep-th]

    Google Scholar 

  21. X.-L. Qi, Exact holographic mapping and emergent space-time geometry (2013). arXiv:1309.6282 [hep-th]

    Google Scholar 

  22. M. Miyaji, T. Takayanagi, Surface/state correspondence as a generalized holography. Prog. Theor. Exp. Phys. 2015 (7), 073B03 (2015). arXiv:1503.03542 [hep-th]

    Google Scholar 

  23. J. Haegeman, T.J. Osborne, H. Verschelde, F. Verstraete, Entanglement renormalization for quantum fields in real space. Phys. Rev. Lett. 110 (10), 100402 (2013). arXiv:1102.5524 [hep-th]

    Google Scholar 

  24. M. Nozaki, S. Ryu, T. Takayanagi, Holographic geometry of entanglement renormalization in quantum field theories. J. High Energy Phys. 1210, 193 (2012). arXiv:1208.3469 [hep-th]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rangamani, M., Takayanagi, T. (2017). AdS/CFT and Tensor Networks. In: Holographic Entanglement Entropy. Lecture Notes in Physics, vol 931. Springer, Cham. https://doi.org/10.1007/978-3-319-52573-0_14

Download citation

Publish with us

Policies and ethics