Skip to main content

Introduction

  • Chapter
  • First Online:
Holographic Entanglement Entropy

Part of the book series: Lecture Notes in Physics ((LNP,volume 931))

Abstract

Quantum mechanics distinguishes itself from classical physics via the presence of entanglement. Classically, one is conditioned to imagine situations wherein components of a single system may be separated into non-interacting parts, which we can separately examine, and then put back together to reconstruct the full system. This intuition fails spectacularly in quantum mechanics, since the separate pieces, whilst non-interacting, could nevertheless be entangled. As Schrödinger put it quite clearly [1]:

The best possible knowledge of a whole does not necessarily include the best possible knowledge of all its parts, even though they may be entirely separate and therefore virtually capable of being ‘best possibly known’, i.e., of possessing, each of them, a representative of its own. The lack of knowledge is by no means due to the interaction being insufficiently known – at least not in the way that it could possibly be known more completely – it is due to the interaction itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Schrodinger, Die gegenwartige Situation in der Quantenmechanik. Naturwiss 23, 807–812 (1935)

    Article  ADS  MATH  Google Scholar 

  2. A. Einstein, B. Podolsky, N. Rosen, Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  3. J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38 (3), 447 (1966)

    Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2010)

    Book  MATH  Google Scholar 

  5. A. Kitaev, J. Preskill, Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006). arXiv:hep-th/0510092 [hep-th]

    Google Scholar 

  6. M. Levin, X.-G. Wen, Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96 (11), 110405 (2006). cond-mat/0510613

    Google Scholar 

  7. A. Vishwanath, Entanglement in condensed matter, in Talk at KITP Workshop, “Closing the Entanglement Gap: Quantum Information, Quantum Matter, and Quantum Fields” (2014)

    Google Scholar 

  8. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). arXiv:hep-th/9711200 [hep-th] [Adv. Theor. Math. Phys. 2, 231 (1998)]

    Google Scholar 

  9. S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). hep-th/0603001

    Google Scholar 

  10. S. Ryu, T. Takayanagi, Aspects of holographic entanglement entropy. J. High Energy Phys. 08, 045 (2006). hep-th/0605073

    Google Scholar 

  11. V.E. Hubeny, M. Rangamani, T. Takayanagi, A Covariant holographic entanglement entropy proposal. J. High Energy Phys. 0707, 062 (2007). arXiv:0705.0016 [hep-th]

    Google Scholar 

  12. B. Swingle, Entanglement renormalization and holography. Phys. Rev. D86, 065007 (2012). arXiv:0905.1317 [cond-mat.str-el]

    Google Scholar 

  13. M. Van Raamsdonk, Comments on quantum gravity and entanglement (2009). arXiv:0907.2939 [hep-th]

    Google Scholar 

  14. M. Van Raamsdonk, Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 42, 2323–2329 (2010). arXiv:1005.3035 [hep-th]

    Google Scholar 

  15. J. Maldacena, L. Susskind, Cool horizons for entangled black holes. Fortschr. Phys. 61, 781–811 (2013). arXiv:1306.0533 [hep-th]

    Google Scholar 

  16. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81 (2), 865 (2009). quant-ph/0702225

    Google Scholar 

  17. P. Calabrese, J.L. Cardy, Entanglement entropy and quantum field theory: a non-technical introduction. Int. J. Quant. Inf. 4, 429 (2006). arXiv:quant-ph/0505193 [quant-ph]

    Google Scholar 

  18. P. Calabrese, J. Cardy, Entanglement entropy and conformal field theory. J. Phys. A A42, 504005 (2009). arXiv:0905.4013 [cond-mat.stat-mech]

    Google Scholar 

  19. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105–114 (1998). arXiv:hep-th/9802109 [hep-th]

    Google Scholar 

  20. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150 [hep-th]

    Google Scholar 

  21. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). arXiv:hep-th/9905111 [hep-th]

    Google Scholar 

  22. E. D’Hoker, D.Z. Freedman, Supersymmetric gauge theories and the AdS / CFT correspondence, in Strings, Branes and Extra Dimensions: TASI 2001: Proceedings (2002), pp. 3–158. arXiv:hep-th/0201253 [hep-th]

    Google Scholar 

  23. M. Ammon, J. Erdmenger, Gauge/Gravity Duality (Cambridge University Press, Cambridge, 2015). http://www.cambridge.org/de/academic/subjects/physics/theoretical-physics-and-mathematical-physics/gaugegravity-duality-foundations-and-applications

    Book  MATH  Google Scholar 

  24. T. Nishioka, S. Ryu, T. Takayanagi, Holographic entanglement entropy: an overview. J. Phys. A42, 504008 (2009). arXiv:0905.0932 [hep-th]

    Google Scholar 

  25. M. Van Raamsdonk, Lectures on gravity and entanglement (2016). arXiv:1609.00026 [hep-th]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rangamani, M., Takayanagi, T. (2017). Introduction. In: Holographic Entanglement Entropy. Lecture Notes in Physics, vol 931. Springer, Cham. https://doi.org/10.1007/978-3-319-52573-0_1

Download citation

Publish with us

Policies and ethics