Skip to main content

Distraction Osteogenesis: Biologic and Biomechanical Principles

  • Chapter
  • First Online:
Craniofacial Distraction

Abstract

Distraction osteogenesis is a bone-regenerative process in which an osteotomy is followed by gradual distraction of the surrounding vascularized bone segments, with formation of new bone within the distraction gap. This process was first described by Alessandro Codivilla at the turn of the twentieth century [1, 2]. Codivilla demonstrated the ability to lengthen the chronically deformed femur or tibia 3–8 cm following an oblique osteotomy. He did this by applying a 25–30 kg distractive force across a full extremity plaster cast, which was serially and circumferentially cut near the level of deformity. Application of traction occurred only at the time of cast adjustment, causing a gap to form, which was then filled with additional plaster. This frequently resulted in pressure necrosis due to rubbing of the cast against the soft tissues of the leg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Codivilla A. On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. Am J Orthop Surg. 1905;(4):353–69. http://jbjs.org/content/s2-2/4/353.abstract

  2. Jordan CJ, Goldstein RY, Mclaurin TM, Grant A. The evolution of the Ilizarov technique: part 1: the history of limb lengthening. Bull NYU Hosp Jt Dis. 2013;71(1):89–95.

    Google Scholar 

  3. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part II. Clin Othop Relat Res. 1989a;(239):263–85.

    Google Scholar 

  4. Ilizarov GA. The tension-stress effect on the genesis and growth of tisues. Part I. Clin Orthop Relat Res. 1989b;(239):263–85.

    Google Scholar 

  5. Snyder CC, Levine GA, Swanson HM, Browne EZ. Mandibular lengthening by gradual distraction. Plast Reconstr Surg. 1973;51(5):506–8.

    Article  CAS  PubMed  Google Scholar 

  6. Karp NS, McCarthy JG, Schreiber JS, Sissons HA, Thorne CHM. Membranous bone lengthening: a serial histological study. Ann Plast Surg. 1992;29(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  7. Karp NS, Thorne CHM, McCarthy JG, Sissons HA. Bone lengthening in the craniofacial skeleton. Ann Plast Surg. 1990;24(3):231–7.

    Article  CAS  PubMed  Google Scholar 

  8. McCarthy JG, Schreiber JS, Karp NS, Thorne CHM, Grayson BH. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg. 1992;89(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rachmiel A, Potparic Z, Jackson IT, Sugihara T, Clayman L, Topf JS, Forté RA. Midface advancement by gradual distraction. Br J Plast Surg. 1993;46(3):201–7. http://www.ncbi.nlm.nih.gov/pubmed/8490698

    Article  CAS  PubMed  Google Scholar 

  10. Staffenberg DA, Wood RJ, McCarthy JG, Grayson BH, Glasberg SB. Midface distraction advancement in the canine without osteotomies. Ann Plast Surg. 1995;34(5):512–7.

    Google Scholar 

  11. Glat PM, Staffenberg DA, Karp NS, Holliday RA, Steiner G, McCarthy JG. Multidimensional distraction osteogenesis: the canine zygoma. Plast Reconstr Surg. 1994;94(6):753–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bouletreau PJ, Warren SM, Paccione MF, Spector JA, McCarthy JG, Longaker MT. Transport distraction osteogenesis: a new method to heal adult calvarial defects. Plast Reconstr Surg. 2002b;109(3):1074–84. http://www.ncbi.nlm.nih.gov/pubmed/11884839

    Article  PubMed  Google Scholar 

  13. Losken HW, Mooney MP, Zoldos J, Tschakaloff A, Burrows AM, Smith TD, et al. Internal calvarial bone distraction in rabbits with delayed-onset coronal suture synostosis. Plast Reconstr Surg. 1998;102(4):1109–19; discussion 1120–1. http://www.ncbi.nlm.nih.gov/pubmed/9734430

  14. Guichet J-M, Deromedis B, Donnan LT, Peretti G, Lascombes P, Bado F. Gradual femoral lengthening with the Albizzia intramedullary nail. J Bone Joint Surg Am. 2003;85-A(5):838–48. http://www.ncbi.nlm.nih.gov/pubmed/12728034

    Article  PubMed  Google Scholar 

  15. Synder M, Niedzielski K, Borowski A. Complication, difficulties and problems in the application of distraction epiphysiolysis. Ortop Traumatol Rehabil. 2002;4(4):464–8. http://www.ncbi.nlm.nih.gov/pubmed/17679880

    PubMed  Google Scholar 

  16. Coeugniet E, Dhellemmes P, Vinchon M, Wolber A, Pellerin P. Midfacial distraction without osteotomy using a transfacial pin and external devices. J Craniofac Surg. 2012;23(1):184–9. doi:10.1097/SCS.0b013e3182418f80.

    Article  PubMed  Google Scholar 

  17. Tong H, Gao F, Yin J, Shi Z, Song T, Li H, et al. Three-dimensional quantitative evaluation of midfacial skeletal changes after trans-sutural distraction osteogenesis for midfacial hypoplasia in growing patients with cleft lip and palate. J Craniomaxillofac Surg. 2015a;43(9):1749–57. doi:10.1016/j.jcms.2015.08.027.

    Article  PubMed  Google Scholar 

  18. Tong H, Wang X, Song T, Gao F, Yin J, Li H, et al. Trans-sutural distraction osteogenesis for midfacial hypoplasia in growing patients with cleft lip and palate: clinical outcomes and analysis of skeletal changes. Plast Reconstr Surg. 2015b;136(1):144–55. doi:10.1097/PRS.0000000000001375.

    Article  CAS  PubMed  Google Scholar 

  19. Slack GC, Fan KL, Tabit C, Andrews B, Hindin DI, Kawamoto HK, Bradley JP. Necessity of latency period in craniofacial distraction: investigations with in vitro microdistractor and clinical outcomes. J Plast Reconstr Aesthet Surg. 2015;68(9):1206–14. doi:10.1016/j.bjps.2015.04.012.

    Article  PubMed  Google Scholar 

  20. Hollier LH, Higuera S, Stal S, Taylor TD. Distraction rate and latency: factors in the outcome of pediatric mandibular distraction. Plast Reconstr Surg. 2006;117(7):2333–6. doi:10.1097/01.prs.0000219354.16549.c9.

    Article  CAS  PubMed  Google Scholar 

  21. Glowacki J, Shusterman EM, Troulis M, Holmes R, Perrott D, Kaban LB. Distraction osteogenesis of the porcine mandible: histomorphometric evaluation of bone. Plast Reconstr Surg. 2004;113(2):566–73. doi:10.1097/01.PRS.0000101061.99577.09.

    Article  PubMed  Google Scholar 

  22. Tavakoli K, Yu Y, Shahidi S, Bonar F, Walsh WR, Poole MD. Expression of growth factors in the mandibular distraction zone: a sheep study. Br J Plast Surg. 1999;52(6):434–9. doi:10.1054/bjps.1999.3157.

    Article  CAS  PubMed  Google Scholar 

  23. McCarthy JG, Stelnicki EJ, Grayson BH. Distraction osteogenesis of the mandible: a ten-year experience. Semin Orthod. 1999;5(1):3–8.

    Article  PubMed  Google Scholar 

  24. McCarthy JG, Stelnicki EJ, Mehrara BJ, Longaker MT. Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg. 2001;107(7):1812–27.

    Article  CAS  PubMed  Google Scholar 

  25. Farhadieh RD, Gianoutsos MP, Dickinson R, Walsh WR. Effect of distraction rate on biomechanical, mineralization, and histologic properties of an ovine mandible model. Plast Reconstr Surg. 2000;105(3):889–95. doi:10.1097/00006534-200003000-00010.

    Article  CAS  PubMed  Google Scholar 

  26. Mofid MM, Manson PN, Robertson BC, Tufaro AP, Elias JJ, Vander Kolk CA. Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg. 2001;108(5):1103–14; discussion 1115–7. http://www.ncbi.nlm.nih.gov/pubmed/11604605

  27. Schendel SA, Heegaard JH. A mathematical model for mandibular distraction osteogenesis. J Craniofac Surg. 1996;7(6):465–8.

    Article  CAS  PubMed  Google Scholar 

  28. Boccaccio A, Pappalettere C, Kelly DJ. The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann Biomed Eng. 2007;35(11):1940–60. doi:10.1007/s10439-007-9367-x.

    Article  CAS  PubMed  Google Scholar 

  29. Djasim UM, Mathot BJ, Wolvius EB, van Neck JW, van der Wal KGH. Histomorphometric comparison between continuous and discontinuous distraction osteogenesis. J Craniomaxillofac Surg. 2009;37(7):398–404. doi:10.1016/j.jcms.2009.03.006.

    Article  CAS  PubMed  Google Scholar 

  30. Peacock ZS, Tricomi ÃBJ, Faquin WC, Magill JC, Murphy BA, Kaban LB, Troulis MJ. Bilateral continuous automated distraction osteogenesis: proof of principle. J Craniofac Surg. 2015;26(8):2320–4. doi:10.1097/SCS.0000000000001996.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Luchs JS, Stelnicki EJ, Rowe NM, Naijher NS, Grayson BH, McCarthy JG. Molding of the regenerate in mandibular distraction: part 1: laboratory study. J Craniofac Surg. 2002;13(2):205–11. doi:10.1097/00001665-200203000-00004.

    Article  PubMed  Google Scholar 

  32. McCarthy JG, Hopper RA, Hollier LH, Peltomaki T, Katzen T, Grayson BH. Molding of the regenerate in mandibular distraction: clinical experience. Plast Reconstr Surg. 2003;112(5):1239–46. doi:10.1097/01.PRS.0000080726.50460.3E.

    Article  PubMed  Google Scholar 

  33. Pensler JM, Goldberg DP, Lindell B, Carroll NC. Skeletal distraction of the hypoplastic mandible. Ann Plast Surg. 1995;134(2):130–6.

    Article  Google Scholar 

  34. Aronson J. Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac J. 1994b;31(6):473–81. doi:10.1597/1545-1569(1994)031<0473:EACEWD>2.3.CO;2.

    Article  CAS  PubMed  Google Scholar 

  35. Hopper RA, Altug AT, Grayson BH, Barillas I, Sato Y, Cutting CB, McCarthy JG. Cephalometric analysis of the consolidation phase following bilateral pediatric mandibular distraction. Cleft Palate Craniofac J. 2003;40(3):233–40. doi:10.1597/1545-1569(2003)040<0233:CAOTCP>2.0.CO;2.

    Article  PubMed  Google Scholar 

  36. Polley JW, Figueroa AA. Rigid external distraction: its application in cleft maxillary deformities. Plast Reconstr Surg. 1998;102(5):1360–72.

    Article  CAS  PubMed  Google Scholar 

  37. Eames BF, De la Fuente L, Helms J a. Molecular ontogeny of the skeleton. Birth Defects Res C Embryo Today Rev. 2003;69(2):93–101. doi:10.1002/bdrc.10016.

    Article  CAS  Google Scholar 

  38. Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev. 1999;87(1–2):57–66. doi:10.1016/S0925-4773(99)00142-2.

    Article  CAS  PubMed  Google Scholar 

  39. Karaplis A. Embryonic Development of Bone and the Molecular Regulation of Intramembranous and Endochondral Bone Formation. In: Bilezikian J, Raisz L, Martin TJ, Editors. Principles of Bone Biology Vol. 1. 2008, ISBN: 9780123738844.

    Google Scholar 

  40. Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn. 2013;242(8):909–22. doi:10.1016/j.biotechadv.2011.08.021.Secreted.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ishii M, Sun J, Ting M-C, Maxson RE. The development of the calvarial bones and sutures and the pathophysiology of craniosynostosis. Curr Top Dev Biol. 2015;115:131–56. doi:10.1016/bs.ctdb.2015.07.004.

    Article  PubMed  Google Scholar 

  42. Eames BF, Helms JA. Conserved molecular program regulating cranial and appendicular skeletogenesis. Dev Dyn. 2004;231(1):4–13. doi:10.1002/dvdy.20134.

    Article  PubMed  Google Scholar 

  43. Abzhanov A, Rodda SJ, McMahon AP, Tabin CJ. Regulation of skeletogenic differentiation in cranial dermal bone. Development. 2007;134(17):3133–44. doi:10.1242/dev.002709.

    Article  CAS  PubMed  Google Scholar 

  44. Bhatt S, Diaz R, Trainor PA, Wu DK, Kelley MW, Tam PL, et al. Signals and switches in mammalian neural crest cell differentiation signals and switches in mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol. 2013;5:a008326. doi:10.1101/cshperspect.a008326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Thorogood PV, Hinchliffe JR. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J Embryol Exp Morphol. 1975;33(3):581–606.

    CAS  PubMed  Google Scholar 

  46. Ducy P, Karsenty G. Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol. 1998;10(5):614–9. http://www.ncbi.nlm.nih.gov/pubmed/9818172

    Article  CAS  PubMed  Google Scholar 

  47. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64. doi:10.1016/S0092-8674(00)80258-5.

    Article  CAS  PubMed  Google Scholar 

  48. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5):773–9. http://www.ncbi.nlm.nih.gov/pubmed/9182765

    Article  CAS  PubMed  Google Scholar 

  49. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–71. http://www.ncbi.nlm.nih.gov/pubmed/9182764

    Article  CAS  PubMed  Google Scholar 

  50. Akiyama H, Chaboissier MC, Martin JF, Schedl A, De Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–28. doi:10.1101/gad.1017802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22(1):85–9. doi:10.1038/8792.

    Article  CAS  PubMed  Google Scholar 

  52. Yan YL, Miller CT, Nissen RM, Singer A, Liu D, Kirn A, et al. A zebrafish sox9 gene required for cartilage morphogenesis. Development. 2002;129(21):5065–79. http://www.ncbi.nlm.nih.gov/pubmed/12397114\n; http://dev.biologists.org/content/129/21/5065.full.pdf

    CAS  PubMed  Google Scholar 

  53. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372(6506):525–30. doi:10.1038/372525a0.

    Article  CAS  PubMed  Google Scholar 

  54. Kwok C, Weller PA, Guioli S, Foster JW, Mansour S, Zuffardi O, et al. Mutations in SOX9, the gene responsible for campomelic dysplasia and autosomal sex reversal. Am J Hum Genet. 1995;57(5):1028–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–20. http://www.ncbi.nlm.nih.gov/pubmed/8001137

    Article  CAS  PubMed  Google Scholar 

  56. Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol. 1997;17(4):2336–46. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=232082&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang P, Jimenez SA, Stokes DG. Regulation of human COL9A1 gene expression. Activation of the proximal promoter region by SOX9. J Biol Chem. 2003;278(1):117–23. doi:10.1074/jbc.M208049200.

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Li H, Tanaka K, Tsumaki N, Yamada Y. Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the α2(XI) collagen gene. J Biol Chem. 2000;275(17):12712–8. doi:10.1074/jbc.275.17.12712.

    Article  CAS  PubMed  Google Scholar 

  59. Yang J, Andre P, Ye L, Yang Y-Z. The Hedgehog signalling pathway in bone formation. Int J Oral Sci. 2015;14:73–9. doi:10.1038/ijos.2015.14.

    Article  CAS  Google Scholar 

  60. Mak KK, Chen M-H, Day TF, Chuang P-T, Yang Y. Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development. 2006;133(18):3695–707. doi:10.1242/dev.02546.

    Article  CAS  PubMed  Google Scholar 

  61. Long F, Chung U, Ohba S, McMahon J, Kronenberg HM, McMahon AP. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development. 2004;131(6):1309–18. doi:10.1242/dev.01006.

    Article  CAS  PubMed  Google Scholar 

  62. Hojo H, Ohba S, Taniguchi K, Shirai M, Yano F, Saito T, et al. Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem. 2013;288(14):9924–32. doi:10.1074/jbc.M112.409342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S. Cell lineage in mammalian craniofacial mesenchyme. Mech Dev. 2008;125(9–10):797–808. doi:10.1016/j.mod.2008.06.007.

    Article  CAS  PubMed  Google Scholar 

  64. Lenton K, James AW, Manu A, Brugmann SA, Birker D, Nelson ER, et al. Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis. 2011;49(10):784–96. doi:10.1002/dvg.20768.

    Article  CAS  PubMed  Google Scholar 

  65. Jenkins D, Seelow D, Jehee F, Perlyn C, Alonso L, Bueno D, et al. RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet. 2007;80(6):1162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rice DPC, Connor EC, Veltmaat JM, Lana-Elola E, Veistinen L, Tanimoto Y, et al. Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation. Hum Mol Genet. 2010;19(17):3457–67. doi:10.1093/hmg/ddq258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat. 2002;19(3):209–16. doi:10.1002/humu.10043.

    Article  CAS  PubMed  Google Scholar 

  68. Sperber G, Sperber SM, Guttmann GD. Craniofacial embryogenetics and development. 2nd ed. Shelton: PMPH; 2010.

    Google Scholar 

  69. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392–404. doi:10.1016/j.injury.2005.07.019.

    Article  PubMed  Google Scholar 

  70. Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, et al. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem. 2006;54(11):1215–28. doi:10.1369/jhc.6A6959.2006.

    Article  CAS  PubMed  Google Scholar 

  71. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107–18. doi:10.1177/154405910808700215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hankenson K, Zimmermann G, Marcucio RS. Biologic perspectives of delayed fracture healing. Injury. 2014;45(Suppl 2):S8–S15. doi:10.1002/jcp.24872.The.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. doi:10.1016/j.injury.2011.03.031.THE.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, George L, Einhorn TA, Gerstenfeld LC. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone. 2009;44(2):335–44. doi:10.1016/j.bone.2008.10.039.Micro-Computed.

    Article  PubMed  Google Scholar 

  75. Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res. 2001;16(6):1004–14. doi:10.1359/jbmr.2001.16.6.1004.

    Article  CAS  PubMed  Google Scholar 

  76. Sandberg MM, Hannu TA, Vuorio EI. Gene expression during bone repair. Clin Orthop Relat Res. 1993;289:292–312.

    Google Scholar 

  77. Bostrom M. Expression of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res. 1998;(355 Suppl):S116–23. http://www.ncbi.nlm.nih.gov/pubmed/9917632

  78. Wang X, Yu YY, Lieu S, Yang F, Lang J, Lu C, et al. MMP9 regulates the cellular response to inflammation after skeletal injury. Bone. 2013;52(1):111–9. doi:10.1016/j.bone.2012.09.018.MMP9.

    Article  PubMed  CAS  Google Scholar 

  79. Cho T-J, Gerstenfeld LC, Einhorn T a. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002;17(3):513–20. doi:10.1359/jbmr.2002.17.3.513.

    Article  CAS  PubMed  Google Scholar 

  80. Wang Q, Huang C, Xue M, Zhang. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone. 2011;48(3):524–32. doi:10.1016/j.bone.2010.10.178.Expression.

    Article  CAS  PubMed  Google Scholar 

  81. Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA. Altered fracture repair in the absence of MMP9. Development. 2003;130(17):4123–33. doi:10.1242/dev.00559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 2003;18(9):1584–92. doi:10.1359/jbmr.2003.18.9.1584.

    Article  CAS  PubMed  Google Scholar 

  83. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A. 2011;108(4):1585–90. doi:10.1073/pnas.1018501108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003;85-A(8):1544–52.

    Article  PubMed  Google Scholar 

  85. Wang X-X, Wang X, Li Z-L. Effects of mandibular distraction osteogenesis on the inferior alveolar nerve: an experimental study in monkeys. Plast Reconstr Surg. 2002;109(7):2373–83. http://www.ncbi.nlm.nih.gov/pubmed/12045565

    Article  PubMed  Google Scholar 

  86. Bodine PVN, Seestaller-Wehr L, Kharode YP, Bex FJ, Komm BS. Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J Cell Physiol. 2007;210(2):352–7. doi:10.1002/jcp.20834.

    Article  CAS  PubMed  Google Scholar 

  87. Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJS, et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010;11(2):161–71. doi:10.1021/ja8019214.Optimization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jilka RL, Brien CAO, Ali AA, Roberson P, Weinstein RS, Manolagas SC. Formation by actions on post-mitotic. Bone. 2010;44(2):275–86. doi:10.1016/j.bone.2008.10.037.INTERMITTENT.

    Article  CAS  Google Scholar 

  89. Craft PD, Mani MM, Pazel J, Masters FW. Experimental study of healing in fractures of membranous bone. Plast Reconstr Surg. 1974;55(3):321–5.

    Article  Google Scholar 

  90. Paccione MF, Warren SM, Spector JA, Greenwald JA, Bouletreau PJ, Longaker MT. A mouse model of mandibular osteotomy healing. J Craniofac Surg. 2001;12(5):444–50. doi:10.1097/00001665-200109000-00008.

    Article  CAS  PubMed  Google Scholar 

  91. Hasegawa T, Miwa M, Sakai Y, Nikura T, Lee SY, Oe K, et al. Mandibular hematoma cells as a potential reservoir for osteoprogenitor cells in fractures. J Oral Maxillofac Surg. 2012;70(3):599–607. doi:10.1016/j.joms.2011.03.043.

    Article  PubMed  Google Scholar 

  92. Oe K, Miwa M, Sakai Y, Lee SY, Kuroda R, Kurosaka M. An in vitro study demonstrating that haematomas found at the site of human fractures contain progenitor cells with multilineage capacity. J Bone Joint Surg Br. 2007;89-B(1):133–8. doi:10.1302/0301-620X.89B1.18286.

    Article  Google Scholar 

  93. Spector JA, Luchs JS, Mehrara BJ, Greenwald JA, Smith LP, Longaker MT. Expression of bone morphogenetic proteins during membranous bone healing. Plast Reconstr Surg. 2001;107(1):124–34.

    Article  CAS  PubMed  Google Scholar 

  94. Steinbrech DS, Mehrara BJ, Rowe NM, Dudziak ME, Luchs JS, Saadeh PB, et al. Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast Reconstr Surg. 2000;105(6):2028–38.

    Article  CAS  PubMed  Google Scholar 

  95. Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res. 1990a;(250):43–9. http://www.ncbi.nlm.nih.gov/pubmed/2293943

  96. Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res. 1990b;250:43–9.

    Google Scholar 

  97. Jazrawi LM, Majeska RJ, Klein ML, Kagel E, Stromberg L, Einhorn TA. Bone and cartilage formation in an experimental model of distraction osteogenesis. J Orthop Trauma. 1998;12(2):111–6.

    Article  CAS  PubMed  Google Scholar 

  98. Vauhkonen M, Peltonen J, Karaharju E, Aalto K, Alitalo I. Collagen synthesis and mineralization in the early phase of distraction bone healing. Bone Miner. 1990;10(3):171–81. http://www.ncbi.nlm.nih.gov/pubmed/2224204

    Article  CAS  PubMed  Google Scholar 

  99. Sato M, Yasui N, Nakase T, Kawahata H, Sugimoto M, Hirota S, et al. Expression of bone matrix proteins mRNA during distraction osteogenesis. J Bone Miner Res. 1998;13(8):1221–31. doi:10.1359/jbmr.1998.13.8.1221.

    Article  CAS  PubMed  Google Scholar 

  100. Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Kitamura Y, Nomura S. Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg Br. 1997;79(5):824–30. doi:10.1302/0301-620X.79B5.7423.

    Article  CAS  PubMed  Google Scholar 

  101. Li G, Virdi AS, Ashhurst DE, Simpson AH, Triffitt JT. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mRNAs and the distribution of types I and II collagens. Cell Biol Int. 2000;24(1):25–33. doi:10.1006/cbir.1999.0449.

    Article  PubMed  Google Scholar 

  102. Karaharju EO, Aalto K, Kahri A, Lindberg L-A, Kallio T, Karaharju-Suvanto T, et al. Distraction bone healing. Clin Orthop Relat Res. 1993;297:38–43.

    Google Scholar 

  103. Hamanishi C, Yoshii T, Totani Y, Tanaka S. Lengthened callus activated by axial shortening. Clin Orthop Relat Res. 1994;307(307):250–4.

    Google Scholar 

  104. Ilizarov GA. Transosseous osteosynthesis. In: Green SA, editor. vol. 1. Berlin: Springer; 1992. doi:10.1017/CBO9781107415324.004

  105. Cho T-J, Kim JA, Chung CY, Yoo WJ, Gerstenfeld LC, Einhorn TA, Choi IH. Expression and role of interleukin-6 in distraction osteogenesis. Calcif Tissue Int. 2007;80(3):192–200. doi:10.1007/s00223-006-0240-y.

    Article  CAS  PubMed  Google Scholar 

  106. Farhadieh RD, Dickinson R, Yu Y, Gianoutsos MP, Walsh WR. The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible. J Craniofac Surg. 1999;10(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  107. Holbein O, Neidlinger-Wilke C, Suger G, Kinzl L, Claes L. Ilizarov callus distraction produces systemic bone cell mitogens. J Orthop Res. 1995;13(4):629–38. doi:10.1002/jor.1100130420.

    Article  CAS  PubMed  Google Scholar 

  108. Lammens J, Liu Z, Aerssens J, Dequeker J, Fabry G. Distraction bone healing versus osteotomy healing: a comparative biochemical analysis. J Bone Miner Res. 1998;13(2):279–86. doi:10.1359/jbmr.1998.13.2.279.

    Article  CAS  PubMed  Google Scholar 

  109. Sato M, Ochi T, Nakase T, Hirota S, Kitamura Y, Nomura S, Yasui N. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res. 1999;14(7):1084–95. doi:10.1359/jbmr.1999.14.7.1084.

    Article  CAS  PubMed  Google Scholar 

  110. Rauch F, Lauzier D, Croteau S, Travers R, Glorieux FH, Hamdy R. Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone. 2000;26(6):611–7.

    Google Scholar 

  111. Ashinoff RL, Cetrulo CL, Galiano RD, Dobryansky M, Bhatt KA, Ceradini DJ, et al. Bone morphogenic protein-2 gene therapy for mandibular distraction osteogenesis. Ann Plast Surg. 2004;52(6):585–90; discussion 591. http://www.ncbi.nlm.nih.gov/pubmed/15166991

  112. Nuntanaranont T, Suttapreyasri S, Vongvatcharanon S. Quantitative expression of bone-related cytokines induced by mechanical tension-stress during distraction osteogenesis in a rabbit mandible. J Investig Clin Dent. 2014;5(4):255–65. doi:10.1111/jicd.12034.

    Article  PubMed  Google Scholar 

  113. Khanal A, Yoshioka I, Tominaga K, Furuta N, Habu M, Fukuda J. The BMP signaling and its Smads in mandibular distraction osteogenesis. Oral Dis. 2008;14(4):347–55. http://www.ncbi.nlm.nih.gov/pubmed/18449963

    Article  CAS  PubMed  Google Scholar 

  114. Mehrara BJ, Longaker MT. New developments in craniofacial surgery research. Cleft Palate Craniofac J. 1999;36(5):377–87. doi:10.1597/1545-1569(1999)036<0377:NDICSR>2.3.CO;2.

    Article  CAS  PubMed  Google Scholar 

  115. Pacicca DM, Patel N, Lee C, Salisbury K, Lehmann W, Carvalho R, et al. Expression of angiogenic factors during distraction osteogenesis. Bone. 2003;33(6):889–98. http://www.ncbi.nlm.nih.gov/pubmed/14678848

    Article  CAS  PubMed  Google Scholar 

  116. Carvalho RS, Einhorn TA, Lehmann W, Edgar C, Al-Yamani A, Apazidis A, et al. The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone. 2004;34(5):849–61. doi:10.1016/j.bone.2003.12.027.

    Article  CAS  PubMed  Google Scholar 

  117. Choi IH, Chung CY, Cho TJ, Yoo WJ. Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci. 2002;17(4):435–47. doi:10.3346/jkms.2002.17.4.435.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JMG, García-García A. RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2010;109(5):679–86. doi:10.1016/j.tripleo.2009.10.042.

    Article  Google Scholar 

  119. Zhu W-Q, Wang X, Wang X-X, Wang Z-Y. Temporal and spatial expression of osteoprotegerin and receptor activator of nuclear factor -kappaB ligand during mandibular distraction in rats. J Craniomaxillofac Surg. 2007;35(2):103–11. doi:10.1016/j.jcms.2006.12.001.

    Article  PubMed  Google Scholar 

  120. Fang TD, Salim A, Xia W, Nacamuli RP, Guccione S, Song HM, et al. Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res. 2005;20(7):1114–24. doi:10.1359/JBMR.050301.

    Article  CAS  PubMed  Google Scholar 

  121. Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res. 1994a;(301):124–31. http://www.ncbi.nlm.nih.gov/pubmed/8156663

  122. Bragdon B, Lybrand K, Gerstenfeld L. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. Curr Protoc Mouse Biol. 2015;5:21–34. doi:10.1002/9780470942390.mo140166.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Matsubara H, Hogan DE, Morgan EF, Mortolock DP, Einhorn TA, Gerstenfeld LC. Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone. 2012;51(1):168–80. doi:10.1016/j.drugalcdep.2008.02.002.A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Morgan EF, Hussein AI, Al-Awadhi BA, Hogan DE, Matsubara H, Al-Aql ZS, et al. Vascular development during distraction osteogenesis proceeds by sequential intramuscular arteriogenesis followed by intraosteal angiogenesis. Bone. 2012;51(3):535–45. doi:10.1016/j.bone.2012.05.008.Vascular.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Jacobsen KA, Al-Aql ZS, Wan C, Fitch JL, Stapleton SN, Mason ZD, et al. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res. 2008;23(5):596–609. doi:10.1359/jbmr.080103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Donneys A, Farberg AS, Tchanque-Fossuo CN, Deshpande SS, Buchman SR. Deferoxamine enhances the vascular response of bone regeneration in mandibular distraction osteogenesis. Plast Reconstr Surg. 2012a;129(4):850–6. doi:10.1097/PRS.0b013e31824422f2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Farberg AS, Sarhaddi D, Donneys A, Deshpande SS, Buchman SR. Deferoxamine enhances bone regeneration in mandibular distraction osteogenesis. Plast Reconstr Surg. 2014;133(3):666–71. doi:10.1097/01.prs.0000438050.36881.a9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res. 2009;24(2):274–82. doi:10.1359/jbmr.081003.

    Article  PubMed  Google Scholar 

  129. Shibazaki R, Maki K, Tachikawa T, Shibasaki Y, Hinton RJ, Carlson DS, Opperman LA. Changes in parathyroid hormone-related protein and 3-dimensional trabecular bone structure of the mandibular condyle following mandibular distraction osteogenesis in growing rats. J Oral Maxillofac Surg. 2005;63(4):505–12. doi:10.1016/j.joms.2004.12.005.

    Article  PubMed  Google Scholar 

  130. Kasaai B, Moffatt P, Al-Salmi L, Lauzier D, Lessard L, Hamdy RC. Spatial and temporal localization of WNT signaling proteins in a mouse model of distraction osteogenesis. J Histochem Cytochem. 2012;60(3):219–28. doi:10.1369/0022155411432010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nott RL, Stelnicki EJ, Mack JA, Ben Y, Mitchell R, Mooney MP. Changes in the protein expression of hedgehog and patched-1 in perisutural tissues induced by cranial distraction. Plast Reconstr Surg. 2002;110(2):523–32. http://www.ncbi.nlm.nih.gov/pubmed/12142671

    Article  PubMed  Google Scholar 

  132. Lauterburg MT, Exner GU, Jacob HAC. Forces involved in lower limb lengthening: an in vivo biomechanical study. J Orthop Res. 2006;24(9):1815–22. doi:10.1002/jor.20217.

    Article  PubMed  Google Scholar 

  133. Aarnes GT, Steen H, Ludvigsen P, Waanders NA, Huiskes R, Goldstein SA. In vivo assessment of regenerate axial stiffness in distraction osteogenesis. J Orthop Res. 2005;23(2):494–8. doi:10.1016/j.orthres.2004.08.024.

    Article  PubMed  Google Scholar 

  134. Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998;355S:S41–55.

    Article  Google Scholar 

  135. Loboa EG, Fang TD, Parker DW, Warren SM, Fong KD, Longaker MT, Carter DR. Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model. J Orthop Res. 2005;23(3):663–70. doi:10.1016/j.orthres.2004.09.010.

    Article  PubMed  Google Scholar 

  136. Loboa EG, Fang TD, Warren SM, Lindsey DP, Fong KD, Longaker MT, Carter DR. Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model. Bone. 2004;34:336–43. doi:10.1016/j.bone.2003.10.012.

    Article  PubMed  Google Scholar 

  137. Shu Z, Xin-sheng C, Bing W. Mechanotransduction in osteoblast and osteocyte regulation***☆○◆. J Clin Rehabil Tissue Eng Res. 2011;15(24):4530–6.

    Google Scholar 

  138. Natu SS, Ali I, Alam S, Giri KY, Agarwal A, Kulkarni VA. The biology of distraction osteogenesis for correction of mandibular and craniomaxillofacial defects: a review. Dent Res J. 2014;11(1):16–26. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3955310&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  139. Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone. 2015;80:24–36. doi:10.1016/j.bone.2015.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54(2):182–90. doi:10.1016/j.bone.2012.10.013.

    Article  CAS  PubMed  Google Scholar 

  141. Lanyon LE. Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int. 1993;53 Suppl 1:S102–6; discussion S106–7. http://www.ncbi.nlm.nih.gov/pubmed/8275362

  142. Bonivtch AR, Bonewald LF, Nicolella DP. Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. Mater Eng. 2007;40(10):2199–206.

    Google Scholar 

  143. Han Y, Cowin SC, Schaffler MB, Weinbaum S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci U S A. 2004;101(47):16689–94. doi:10.1073/pnas.0407429101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Davidson EH, Sultan SM, Butala P, Knobel D, Warren SM. Lacunocanalicular fluid flow transduces mechanical tension stress during distraction osteogenesis. J Craniofac Surg. 2013;24(5):1558–64. doi:10.1097/SCS.0b013e31828f2060.

    Article  PubMed  Google Scholar 

  145. Malone AMD, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104(33):13325–30. doi:10.1073/pnas.0700636104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li J, Burr DB, Turner CH. Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading. Calcif Tissue Int. 2002;70(4):320–9. doi:10.1007/s00223-001-1025-y.

    Article  CAS  PubMed  Google Scholar 

  147. Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281(33):23698–711. doi:10.1074/jbc.M601000200.

    Article  CAS  PubMed  Google Scholar 

  148. Kesavan C, Wergedal JE, Lau K-HW, Mohan S. Conditional disruption of IGF-I gene in type 1α collagen-expressing cells shows an essential role of IGF-I in skeletal anabolic response to loading. Am J Physiol Endocrinol Metab. 2011;301(6):E1191–7. doi:10.1152/ajpendo.00440.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lau K-HW, Baylink DJ, Zhou X-D, Rodriguez D, Bonewald LF, Li Z, et al. Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity. Am J Physiol Endocrinol Metab. 2013;305(2):E271–81. doi:10.1152/ajpendo.00092.2013.

    Article  CAS  PubMed  Google Scholar 

  150. Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, et al. Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res. 2002;17(6):1015–25. doi:10.1359/jbmr.2002.17.6.1015.

    Article  CAS  PubMed  Google Scholar 

  151. Hong P, Boyd D, Beyea SD, Bezuhly M. Enhancement of bone consolidation in mandibular distraction osteogenesis: a contemporary review of experimental studies involving adjuvant therapies. J Plast Reconstr Aesthet Surg. 2013;66(7):883–95. doi:10.1016/j.bjps.2013.03.030.

    Article  PubMed  Google Scholar 

  152. Buchman SR, Ignelzi MA, Radu C, Wilensky J, Rosenthal AH, Tong L, et al. Unique rodent model of distraction osteogenesis of the mandible. Ann Plast Surg. 2002;49(5):511–9. doi:10.1097/01.SAP.0000015490.10557.33.

    Article  PubMed  Google Scholar 

  153. Felice PA, Ahsan S, Perosky JE, Deshpande SS, Nelson NS, Donneys A, et al. Prophylactic amifostine preserves the biomechanical properties of irradiated bone in the murine mandible. Plast Reconstr Surg. 2014;133:314e–21e. doi:10.1097/01.prs.0000438454.29980.f8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Deshpande SS, Gallagher KK, Donneys A, Nelson NS, Guys NP, Felice PA, et al. Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis. Plast Reconstr Surg. 2015;135(3):799–806. doi:10.1097/PRS.0000000000001024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fregene A, Jing XL, Monson LA, Buchman SR. Alteration in volumetric bone mineralization density gradation patterns in mandibular distraction osteogenesis following radiation therapy. Plast Reconstr Surg. 2009;124(4):1237–44. doi:10.1097/PRS.0b013e3181b5a42f.

    Article  CAS  PubMed  Google Scholar 

  156. Schwarz DA, Jamali AM, Kakwan MS, Fregene A, Arman KG, Buchman SR. Biomechanical assessment of regenerate integrity in irradiated mandibular distraction osteogenesis. Plast Reconstr Surg. 2009;123(2 Suppl 1):114S–22S. doi:10.1097/PRS.0b013e318191c5d2.

    Article  CAS  PubMed  Google Scholar 

  157. Tchanque-Fossuo CN, Monson LA, Farberg AS, Donneys A, Zehtabzadeh AJ, Razdolsky ER, Buchman SR. Dose-response effect of human equivalent radiation in the murine mandible: part I. A histomorphometric assessment. Plast Reconstr Surg. 2011;128(1):114–21. doi:10.1097/PRS.0b013e31821741d4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Deshpande SS, Gallagher KK, Donneys A, Tchanque-Fossuo CN, Sarhaddi D, Nelson NS, et al. Parathyroid hormone therapy mollifies radiation-induced biomechanical degradation in murine distraction osteogenesis. Plast Reconstr Surg. 2013a;132(1):91–100. doi:10.1097/PRS.0b013e3182910ae7.

    Article  CAS  Google Scholar 

  159. Deshpande S, James AW, Blough J, Donneys A, Wang SC, Cederna PS, et al. Reconciling the effects of inflammatory cytokines on mesenchymal cell osteogenic differentiation. J Surg Res. 2013b;185(1):278–85. doi:10.1016/j.jss.2013.06.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tchanque-Fossuo CN, Donneys A, Razdolsky ER, Monson LA, Farberg AS, Deshpande SS, et al. Quantitative histologic evidence of amifostine-induced cytoprotection in an irradiated murine model of mandibular distraction osteogenesis. Plast Reconstr Surg. 2012;130(6):1199–207. doi:10.1097/PRS.0b013e31826d2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto L. Flores M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Runyan, C.M., Flores, R.L., McCarthy, J.G. (2017). Distraction Osteogenesis: Biologic and Biomechanical Principles. In: McCarthy, J. (eds) Craniofacial Distraction. Springer, Cham. https://doi.org/10.1007/978-3-319-52564-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52564-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52562-4

  • Online ISBN: 978-3-319-52564-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics