Skip to main content

Composition, Formation, and Occurrence of Polymetallic Nodules

  • Chapter
  • First Online:
Deep-Sea Mining

Abstract

Manganese nodules occur as two-dimensional deposits in abyssal plains of all major oceans. In the Clarion-Clipperton Zone of the northeast equatorial Pacific alone, the amount of nodules is estimated to 21 billion tons indicating the huge potential of this deposit type. Apart from manganese, metals of economic interest are nickel, copper, and cobalt, but the nodules also contain interesting amounts of molybdenum, titanium, lithium, and the rare earth elements. Therefore they are also called as polymetallic nodules.

The nodules consist of concentrically banded zones of micro-layers around a nucleus. They form by metal precipitation either from the ambient seawater (hydrogenetic) or from pore water in the sediments (diagenetic). They generally consist of a mixture of both genetic types but in varying proportions. Hydrogenetic precipitation leads to the enrichment of other metals than diagenetic precipitation (cobalt, rare earths versus nickel, copper, etc.), thus controlling the general chemical composition of the nodules. It seems that suboxic conditions (dissolved oxygen content is less than 5% of the saturation concentration) are generally necessary for diagenetic formation and oxic conditions for hydrogenetic formation. The change from oxic to suboxic conditions and vice versa is probably climatically controlled.

Manganese nodules from the sediment surface are mainly composed of phyllomanganates such as vernadite, birnessite, and buserite, whereas amounts of todorokite seem to be negligible. Phyllomanganates contain their metals either as substitutes of manganese in octahedral layers or as hydrated cations in the interlayers.

Well-studied occurrences of manganese nodules are known from the Clarion-Clipperton Zone in the NE equatorial Pacific, the Peru Basin in the SE Pacific, the Cook Island region in the SW Pacific, the central Indian Ocean Basin, and the Baltic Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 08 January 2019

    This chapter was inadvertently published with error

References

  • Bargar JR, Tebo BM, Bergmann U, Webb SM, Glatzel P, Chiu VQ, Villalobos M (2005) Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1. Am Mineral 90:143–154

    Google Scholar 

  • Beiersdorf H (2003) Scientific challenges related to the development of a geological model for the manganese nodule occurrences in the clarion-clipperton zone (Equatorial North Pacific Ocean). In: Establishment of a geological model of polymetallic deposits in the Clarion-Clipperton Fracture Zone of the equatorial North Pacific Ocean. Intenational Seabed Authority (ISA), Kingston, pp 175–200

    Google Scholar 

  • Blöthe M, Wegorzewski AV, Müller C, Simon F, Kuhn T, Schippers A (2015) Manganese-cycling microbial communuties inside deep-sea manganese nodules. Environ Sci Technol 49:7692–7700

    Google Scholar 

  • Bodeï S, Manceau A, Geoffroy N, Baronnet A, Buatier M (2007) Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochim Cosmochim Acta 71:5698–5716

    Google Scholar 

  • Bollhöfer A, Eisenhauer A, Frank N, Pech D, Mangini A (1996) Thorium and uranium isotopes in a manganese nodule from the Peru basin determined by alpha spectrometry and thermal ionization mass spectrometry (TIMS): are manganese supply and growth related to climate? Geologische Rundschau 85:577–585

    Google Scholar 

  • Bonatti E, Kraemer T, Rydell H (1972) Classification and genesis of submarine iron-manganese deposits. In: Horn DR (ed) Ferromanganese deposits on the ocean floor. NSF, Washington, pp 149–166

    Google Scholar 

  • Borole DV (1993) Late Pleistocene sedimentation: a case study in the central Indian Ocean Basin. Deep Sea Res 40:761–775

    Google Scholar 

  • Bradtmiller LI, Anderson RF, Sachs JP, Fleisher MQ (2010) A deep respired carbon pool in the glacial equatorial Pacific Ocean. Earth Planet Sci Lett 299:417–425

    Google Scholar 

  • Bruland KW (1983) Trace elements in sea water. In: Riley JP, Chester R (eds) Chemical oceanography, vol 8. Academic Press, London, pp 156–220

    Google Scholar 

  • Burns RG, Burns VM (1977) Mineralogy. In: Glasby GP (ed) Marine manganese deposits. Elsevier oceanography series, vol 15. Elsevier, Amsterdam, pp 185–248

    Google Scholar 

  • Burns VM, Burns RG (1978) Authigenic todorokite and phillipsite inside deep sea manganese nodules. Am Mineral 63:827–831

    Google Scholar 

  • Burns RG, Burns VM, Stockman HW (1983). A review of the todorokite-buserite problem: implications to the mineralogy of marine manganaese nodules. Am Mineral 68:972–980

    Google Scholar 

  • Byrne RH (2002) Speciation in seawater. In: Ure AM, Davidson CM (eds) Chemical speciation in the environment. Blackwell Publishing Ltd, Oxford, pp 322–357

    Google Scholar 

  • Cairncross B, Beukes NJ (2013) The Kalahari Manganese Field. Struik Nature Ltd., Cape Town, 383 p

    Google Scholar 

  • Cherkashov G, Smyslov A, Soreide F (2013) Fe-Mn nodules of the finnish bay (Baltic Sea): exploration and exploitation experience. In: Morgan CL (ed) Recent developments in Atlantic seabed minerals exploration and other topics of timely interest. The Underwater Mining Institute, Rio de Janeiro, 4 p

    Google Scholar 

  • Chester R, Jickells T (2012) Marine geochemistry, 3rd ed. Wiley-Blackwell, Oxford, 411 p

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Beresovskaya VV, Sivtsov AV (1979) Contributions to the mineralogy of authigenic manganese phases from marine manganese deposits. Miner Deposita 14:249–261

    Google Scholar 

  • Cronan DS, Rothwell G, Croudace I (2010) An ITRAX geochemical study of ferromanganiferous sediments from the Penrhyn Basin, South Pacific Ocean. Mar Georesour Geotechnol 28:207–221

    Google Scholar 

  • Drits VA, Tchoubar C (1990) X-ray diffraction by disordered lamellar structures: theory and applications to microdivided silicates and carbons. Springer, Berlin, p 371

    Google Scholar 

  • Drits VA, Silvester E, Gorshkov AI, Manceau A (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction. Am Mineral 82:946–961

    Google Scholar 

  • Drits VA, Lanson B, Gaillot AC (2007) Birnessite polytype systematics and identification by powder X-ray diffraction. Am Mineral 92:771–788

    Google Scholar 

  • Ehrlich HL (1963) Bacteriology of manganese nodules: I. Bacterial action on manganese in nodules enrichments. Appl Microbiol 11:15–19

    Google Scholar 

  • Ehrlich HL (1972) Response of some activities of ferromanganese nodule bacteria to hydrostatic pressure. In: Cilwell RR, Morita RY (eds) Effect of the ocean environment on microbial activities. University Park Press, Baltimore, pp 208–211

    Google Scholar 

  • Ehrlich HL (2000) Ocean manganese nodules: biogenesis and bioleaching possibilities. Miner Metall Process 17:121–128

    Google Scholar 

  • Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC/Taylor & Francis Group, Boca Raton, p 606

    Google Scholar 

  • Eisenhauer A, Gögen K, Pernicka E, Mangini A (1992) Climatic influences on the growth rates of Mn crusts during the Late Quaternary. Earth Planet Sci Lett 109:25–36

    Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Cullen D, Dauphin P (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Google Scholar 

  • Galoway F, Bender M (1982) Diagenetic models of interstitial nitrate profiles in deep-sea suboxic sediments. Limnol Oceanogr 27:624–638

    Google Scholar 

  • Giovanoli R, Bürki P, Giuffredi M, Stumm W (1975) Layer structured manganese oxide-hydroxides. IV. The buserite group: structure stabilisation by transition elements. Chimia 29:517–520

    Google Scholar 

  • Giovanoli R (1980) On natural and synthetic manganese nodules. Geol Geochem Manganese 1(65):100–202

    Google Scholar 

  • Glasby GP (2006) Manganese: predominant role of nodules and crusts. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Heidelberg, pp 371–428

    Google Scholar 

  • Glasby GP, Emelyanow EM, Zhamoida VA, Baturin GN, Leipe T, Bahlo R and Bonacker P (1997) Environments of formation of ferromanganese concretions in the Baltic Sea: a critical review. In: Nickelson K, Hein JR, Bühn B, Dasgupta S (eds) Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geol. Soc. Spec. Publ. No. 119, pp 213–238

    Google Scholar 

  • Golden DC, Dixon JB, Chen CC (1986) Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clays Clay Miner 34:511–520

    Google Scholar 

  • González FJ, Somoza L, Leon R, Medialdea T, de Torres T, Ortiz JE, Lunar R, Martinez-Frias J, Merinero R (2012) Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic): palaeoenvironmental records of fluid venting and bottom currents. Chem Geol 310–311:56–78

    Google Scholar 

  • González J, Somoza L, Lunar R, Martínez-Frías J, Medialdea T, León R, Martín-Rubí JA, Torres T, Ortiz JE, Marino E (2014) Polymetallic ferromanganese deposits research on the Atlantic Spanish continental margin. In: Hein JR, Barriga FJAS, Morgan, CL (eds) Harvesting seabed minerals resources in harmony with nature. UMI, Lisbon, Portugal

    Google Scholar 

  • Grangeon S, Lanson B, Miyata N, Tani Y, Manceau A (2010) Structure of nanocrystalline phyllomanganates produced by freshwater fungi. Am Mineral 95:1608–1616

    Google Scholar 

  • Haeckel M, König I, Riech V, Weber ME, Suess E (2001) Pore water profiles and numerical modelling of biogeochemical processes in Peru Basin deep-sea sediments. Deep Sea Res II 48:3713–3736

    Google Scholar 

  • Halbach P, Friedrich G, von Stackelberg U (1988) The manganese nodule belt of the Pacific Ocean. Enke, Stuttgart, p 254

    Google Scholar 

  • Han X, Jin X, Yang S, Fietzke J, Eisenhauer A (2003) Rhythic growth of Pacific ferromanganese nodules and their Milankovitch climattic origin. Earth Planet Sci Lett 211:143–157

    Google Scholar 

  • Hastings D, Emerson S (1986) Oxidation of manganese by spores of a marine Bacillus: kinetic and thermodynamic considerations. Geochim Cosmochim Acta 50(8):1819–1824

    Google Scholar 

  • Hein JR, Koschinsky A (2013) Deep-ocean ferromanganese crust and nodules. In: Holland H, Turekian K (eds) Earth systems and environmental sciences, treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 273–291

    Google Scholar 

  • Hein JR, Schulz MS, Kang J-K (1990) Insular and submarine ferromanganese mineralization of the Tonga-Lau region. Mar Mining 9:305–354

    Google Scholar 

  • Hein JR, Conrad TA, Staudigel H (2010) Seamount mineral deposits. A source of rare metals for high-technology industries. Oceanography 23(1):184–189

    Google Scholar 

  • Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14

    Google Scholar 

  • Hein JR, Spinardi F, Okamoto N, Mizell K, Thorburn D, Tawake A (2015) Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geol Rev 68:97–116

    Google Scholar 

  • Herguera JC (2000) Last glacial paleoproductivity patterns in the eastern equatorial Pacific: benthic foraminifera records. Mar Micropaleontol 40:259–275

    Google Scholar 

  • Hlawatsch S, Garbe-Schönberg CD, Lechtenberg F, Manceau A, Tamura N, Kulik DA, Kersten M (2002) Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for long-term environmental changes. Chem Geol 181:697–709

    Google Scholar 

  • ISA (2010) A geological model of polymetallic nodules in the Clarion-Clipperton Fracture Zone. International Seabed Authority Technical Study No. 6. Kingston, Jamaica, p 75

    Google Scholar 

  • Koschinsky A (2001) Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments. Deep Sea Res II 48:3757–3777

    Google Scholar 

  • Koschinsky A, Halbach P (1995) Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochim Cosmochim Acta 59:5113–5132

    Google Scholar 

  • Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 198:331–351

    Google Scholar 

  • Krapf E (2014) Investigations of growth structures of manganese nodules from the East Pacific using micro-analytical approaches. Master thesis (in German), University of Clausthal, Clausthal-Zellerfeld, p 62

    Google Scholar 

  • Kuhn T, Bau M, Blum N, Halbach P (1998) Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe–Mn crusts from the Central Indian Ridge. Earth Planet Sci Lett 163:207–220

    Google Scholar 

  • Kuhn T, Burger H, Castradori D, Halbach P (2000) Tectonic and hydrothermal evolution of ridge segments near the Rodrigues Triple Junction (Central Indian Ocean) deduced from sediment geochemistry. Mar Geol 169:391–409

    Google Scholar 

  • Kuhn T, Bostick BC, Koschinsky A, Halbach P, Fendorf S (2003) Enrichment of Mo in hydrothermal Mn precipitates: possible Mo sources, formation process and phase associations. Chem Geol 199:29–43

    Google Scholar 

  • Lilley MD, Feely RA, Trefry JH (1995) Chemical and biochemical transformations in hydrothermal plumes. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems. Geophys. Monogr. 91, Am. Geophys. Union, Washington, pp 369–391

    Google Scholar 

  • Lyle M (1982) Estimating growth rates of ferromanganese nodules from chemical compositions: implications for nodule formation processes. Geochim Cosmochim Acta 46(11):2301–2306

    Google Scholar 

  • Manceau A, Gorshkov AI, Drits VA (1992a) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Infromation from EXAFS spectroscopy and electron and X-ray diffraction. Am Mineral 77:1144–1157

    Google Scholar 

  • Manceau A, Gorshkov AI, Drits VA (1992b) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part I. Information from XANES spectroscopy. Am Mineral 77:113–1143

    Google Scholar 

  • Manceau A, Drits VA, Silvester E, Bartoli C, Lanson B (1997) Structural mechanism of Co2+ oxidation by the phyllomanganate buserite. Am Mineral 82(11–12):1150–1175

    Google Scholar 

  • Manceau A, Marcus MA, Grangeon S (2012) Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am Mineral 97:816–827

    Google Scholar 

  • Manceau A, Lanson M, Takahashi Y (2014) Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. Am Mineral 99:2068–2083

    Google Scholar 

  • Mandernack KW, Post J, Tebo BM (1995) Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: evidence for the direct oxidation of Mn(II) to Mn(IV). Geochim Cosmochim Acta 59:4393–4408

    Google Scholar 

  • Mann S, Sparks NHC, Scott GHE, deVrind-deJong EW (1988) Oxidation of manganese and formation of Mn3O4 (hausmannite) by spore coats of a marine Bacillus sp. Appl Environ Microbiol 54:2140–2143

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev. Mineral. 21, Mineral. Soc. Am., Washington, pp 169–200

    Google Scholar 

  • Mewes K, Mogollón JM, Picard A, Rühlemann C, Kuhn T, Nöthen K, Kasten S (2014) The impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion–Clipperton Fracture Zone. Deep-Sea Res 191:125–141

    Google Scholar 

  • Miyata N, Maruo K, Tani Y, Tsuno H, Seyama H, Soma M, Iwahori K (2006) Production of biogenic manganese oxides by anamorphic ascomycete fungi isolated from streambed pebbles. Geomicrobiol J 23:63–73

    Google Scholar 

  • Morgan JJ (2005) Kinetics of reaction between O2 and Mn (II) species in aqueous solutions. Geochim Cosmochim Acta 69:35–48

    Google Scholar 

  • Mukhopadhyay R, Ghosh AK (2010) Dynamics of formation of ferromanganese nodules in the Indian Ocean. J Asian Earth Sci 37:394–398

    Google Scholar 

  • Mukhopadhyay R, Ghosh AK, Iyer SD (2008) The Indian Ocean nodule field. Geology and resource potential. In: Hale M (series editor) Handbook of exploration and environmental geochemistry no. 10. Elsevier, Amsterdam, p 292

    Google Scholar 

  • Müller PJ, Hartmann M, Suess E (1988) The chemical environment of pelagic sediments. In: Halbach P, Friedrich G, von Stackelberg U (eds) The manganese nodule belt of the Pacific ocean: geological, environment, nodule formation, and mining aspects. Enke, Stuttgart, pp 70–90

    Google Scholar 

  • Novikov GV. Bogdanova O, Yu (2007) Transformations of ore minerals in genetically different oceanic ferromanganese rocks. Lithol Miner Resour 42:303–317

    Google Scholar 

  • Peacock CL, Sherman DM (2007a) Sorption of Ni by birnessite: equilibrium controls on Ni in seawater. Chem Geol 238:94–106

    Google Scholar 

  • Peacock CL, Sherman DM (2007b) Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. Am Mineral 92:1087–1092

    Google Scholar 

  • Post JE, Appleman DE (1988) Chalcophanite, ZnMn3O7-3H2O: new crystal-structure determinations. Am Mineral 73:1401–1404

    Google Scholar 

  • Post JE, Appleman DE (1994) Crystal structure refinement of lithiophorite. Am Mineral 79:370–374

    Google Scholar 

  • Post JE, Bish DL (1988) Rietveld refinement of the todorokite structure. Am Mineral 73:861–869

    Google Scholar 

  • Post JE, Veblen DR (1990) Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Mineral 75:477–489

    Google Scholar 

  • Post JE, Heaney PJ, Hanson J (2003) Synchrotron X-ray diffraction of the structure and dehydration behavior of todorokite. Am Mineral 88:142–150

    Google Scholar 

  • Rogers TDS, Hodkinson RA, Cronan DS (2001) Hydrothermal manganese deposits from the Tonga-Kermadec Ridge and Lau Basin Region, Southwest Pacific. Mar Geores Geotechnol 19:245–268

    Google Scholar 

  • Rosson RA, Nealson KH (1982) Manganese bacteria and the marine manganese cycle. In: Ernst WG, Morin JG (eds) The environment of the deep sea. Prentice Hall Inc., Englewood Cliffs, pp 206–216

    Google Scholar 

  • Schweissfurth R (1971) Manganknollen im Meer. Naturwissenschaften 58:344–347

    Google Scholar 

  • Shaw TJ, Gieskes JM, Jahnke RA (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246

    Google Scholar 

  • SPC (2013) Deep sea minerals: manganese nodules, a physical, biological, environmental, and technical review. In: Baker E, Beaudoin Y (eds) vol 1B. Secretariat of the Pacific Community

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley, New York, p 780

    Google Scholar 

  • Takahashi Y, Manceau A, Geoffroy N, Marcus MA, Usui A (2007) Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim Cosmochim Acta 71:984–1008

    Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese (II) oxidation. Trends Microbiol 13:421–428

    Google Scholar 

  • Tebo BM, Clement BG, Dick GJ (2007) Biotransformations of manganese. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, pp 1223–1238

    Google Scholar 

  • Turner S, Buseck PR (1979) Manganese oxide tunnel structures and their intergrowths. Science 203:456–458

    Google Scholar 

  • Usui A, Mita N (1995) Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido, Japan. Clays Clay Miner 43:116–127

    Google Scholar 

  • Usui A, Mellin TA, Nohara M, Yuasa M (1989) Structural stability of marine 10Å manganates from the Ogasawara (Bonin) Arc: implication for low-temperature hydrothermal activity. Mar Geol 86:41–56

    Google Scholar 

  • Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649–2662

    Google Scholar 

  • Visbeck M, Gelpke N (2014) World ocean review 3. Maribus gGmbH, Hamburg, p 163

    Google Scholar 

  • von Stackelberg, U. (1997). Growth history of manganese nodules and crusts of the Peru Basin. In: Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geol Soc Spec Pub, 119, pp 153–176

    Google Scholar 

  • von Stackelberg U (2000) Manganese nodules of the Peru Basin. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton, pp 197–238

    Google Scholar 

  • von Stackelberg U, Beiersdorf H (1987) Manganese nodules and sediments in the equatorial North Pacific Ocean, “Sonne” Cruise SO25, 1982. Geol. Jahrb., D87:403 pp

    Google Scholar 

  • von Stackelberg U, Marchig V (1987) Manganese nodule from the equatorial North Pacific Ocean. Geol Jahrb D87:123–227

    Google Scholar 

  • Warren BE (1941) X-ray diffraction in random layer lattices. Phys Rev 59:693–698

    Google Scholar 

  • Webb SM, Tebo BM, Bargar JR (2005) Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp. strain SG-1. Am Mineral 90:1342–1357

    Google Scholar 

  • Wegorzewski AV, Kuhn T (2014) The influence of suboxic diagenesis on the formation og manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Mar Geol 357:123–138

    Google Scholar 

  • Wegorzewski A, Kuhn T, Dohrmann R, Wirth R, Grangeon S (2015) Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean. Am Mineral 100:2497–2508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kuhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuhn, T., Wegorzewski, A., Rühlemann, C., Vink, A. (2017). Composition, Formation, and Occurrence of Polymetallic Nodules. In: Sharma, R. (eds) Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-52557-0_2

Download citation

Publish with us

Policies and ethics