Skip to main content

Cancer Genomic and Epigenomic Variations in Sub-Saharan Africa

  • Chapter
  • First Online:

Abstract

There are geographical variations in cancer incidence, prevalence, phenotype and mortality. Socio-economic and cultural differences may contribute to these variations, but there is a complex interplay between the environment and cancer. The environment contributes about 70% to lifetime risks of most cancers, and epigenetics sits at the interphase between genes and the environment. Apart from this, genetic variants in both human beings and infective organisms play significant roles in geographical differences in cancer epidemiology. Cancer molecular research is poor in sub-Saharan Africa (SSA) because of financial limitations, but this is improving with increasing north-south co-operation. However, the few studies that are emerging show differences in mutation prevalence, differences in patterns of candidate cancer genes, differences in genetic variants, and in methylation profiles. Many results need validating, and translational work, to understand their significance. Infection is prevalent in SSA, and they are responsible for almost a third of cancers in the region, but their roles, if any, in other cancers are uncertain. This and other environmental factors suggests that cancer molecular work in SSA need to be on whole exomes or genomes rather than known Europeans genetic profiles that is currently the case for majority of research work from the region. This will most likely yield a better understanding of molecular basis of cancer epidemiological differences across regions. To achieve this, there is a need for increasing co-operative work between research institutions in SSA and the industrialised nations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdulkareem FB, et al. KRAS and BRAF mutations in Nigerian colorectal cancers. West Afr J Med. 2012;31(3):198–203.

    CAS  PubMed  Google Scholar 

  • Abdulkareem F, Beggs A, Nnaji M, Adedeji O. Geographical variation in DNA methylation in colorectal cancer. Color Dis. 2016;18(S2):13–76. (Poster 61)

    Google Scholar 

  • Adedokun BO, Olopade CO, Olopade OI. Building local capacity for genomics research in Africa: recommendations from analysis of publications in sub-Saharan Africa from 2004 to 2013. Glob Health Action. 2016;9:31026.

    Article  Google Scholar 

  • Al Moustafa AE, et al. Human papillomaviruses-related cancers presence and prevention strategies in the Middle East and north African regions. Hum Vaccin Immunother. 2014;10(7):1812–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benton MC, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol. 2015;16(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernabe-Dones RD, et al. High prevalence of human papillomavirus in colorectal cancer in Hispanics: a case-control study. Gastroenterol Res Pract. 2016;2016:7896716.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol. 2012;13(8):790–801.

    Article  PubMed  Google Scholar 

  • Brewster AM, Chavez-MacGregor M, Brown P. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry. Lancet Oncol. 2014;15(13):e625–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burk RD, Harari A, Chen Z. Human papillomavirus genome variants. Virology. 2013;445(1–2):232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bye H, et al. Population-specific genetic associations with oesophageal squamous cell carcinoma in South Africa. Carcinogenesis. 2011;32(12):1855–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanella G, et al. Epigenetic signatures of internal migration in Italy. Int J Epidemiol. 2015;44(4):1442–9.

    Article  Google Scholar 

  • Chuang L-C, et al. Association between human papillomavirus and adenocarcinoma of rectum and recto-sigmoid junction: a cohort study of 10,612 women in Taiwan. Cancer Causes Control. 2010;21(12):2123–8.

    Article  PubMed  Google Scholar 

  • Chung CC, Magalhaes WCS, Gonzalez-Bosquet J, Chanock SJ. Genome-wide association studies in cancer – current and future directions. Carcinogenesis. 2010;31(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  • Cook MB, et al. A genome-wide association study of prostate cancer in West African men. Hum Genet. 2014;133(5):509–21.

    Article  CAS  PubMed  Google Scholar 

  • De Martel C, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.

    Article  PubMed  Google Scholar 

  • De Paoli P, Carbone A. Carcinogenic viruses and solid cancers without sufficient evidence of causal association. Int J Cancer. 2013;133(7):1517–29.

    Article  CAS  PubMed  Google Scholar 

  • Erichsen HC, Chanock SJ. SNPs in cancer research and treatment. Br J Cancer. 2004;90(4):747–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fackenthal JD, et al. High prevalence of BRCA1 and BRCA2 mutations in unselected Nigerian breast cancer patients. Int J Cancer. 2012;131(5):1114–23.

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136(5):E359–86.

    Article  PubMed  Google Scholar 

  • Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattori N, Ushijima T. Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med. 2016;8(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobbs A, Ramsay M. Epigenetics and the burden of noncommunicable disease: a paucity of research in Africa. Epigenomics. 2015;7(4):627–39.

    Article  CAS  PubMed  Google Scholar 

  • Huo D, et al. Population differences in breast cancer: survey in indigenous African women reveals over-representation of triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(27):4515–21.

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer: Globocan, Globocan 2012. Retrieved http://globocan.iarc.fr/Pages/online.aspx (2012).

  • Irabor D, Adedeji OA. Colorectal cancer in Nigeria; 40 years on. A review. Eur J Cancer Care. 2009;18(2):110–5.

    Article  CAS  Google Scholar 

  • Jelen MM, et al. Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences. J Virol. 2014;88(13):7307–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81(4):303–11.

    Article  CAS  PubMed  Google Scholar 

  • Ladd-Acosta C, Fallin MD. The role of epigenetics in genetic and environmental epidemiology. Epigenomics. 2015;8:epi.15.102.

    Google Scholar 

  • Langa BC, et al. Copy number analysis of the DLX4 and ERBB2 genes in south African breast cancer patients. Cytogenet Genome Res. 2015;146(3):195–203.

    Article  CAS  PubMed  Google Scholar 

  • Lito P, Solomon M, Li L-S, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science (New York, NY). 2016;351(6273):604–8.

    Article  CAS  Google Scholar 

  • Lovvorn HN, et al. Genetic and chromosomal alterations in Kenyan Wilms tumor. Genes Chromosomes Cancer. 2015;54(11):702–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Whetstine JR. Different facets of copy number changes: permanent, transient, and adaptive. Mol Cell Biol. 2016;36(7):1050–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modest DP, et al. Outcome according to KRAS , NRAS and BRAF mutation as well as KRAS mutation variants. Ann Oncol. 2016;27(9):1746–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy AB, et al. 8q24 risk alleles in West African and Caribbean men. Prostate. 2012;72(12):1366–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngamruengphong S, Patel T. Molecular evolution of genetic susceptibility to hepatocellular carcinoma. Dig Dis Sci. 2014;59(5):986–91.

    Article  CAS  PubMed  Google Scholar 

  • NHGRI: DNA sequencing costs: data – National Human Genome Research Institute (NHGRI). Retrieved September 17, 2016. https://www.genome.gov/27541954/dna-sequencing-costs-data/ (2016).

  • Nystrom M, Mutanen M. Diet and epigenetics in colon cancer. World J Gastroenterol. 2009;15(3):257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuku F, et al. Infection-related cancers in sub-Saharan Africa: a paradigm for cancer prevention and control. Oncology. 2013;84(2):75–80.

    Article  PubMed  Google Scholar 

  • Paschos K, Allday MJ. Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol. 2010;18(10):439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plummer M, et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4(16):609–16.

    Article  Google Scholar 

  • Raskin L, Dakubo JCB, Palaski N, Green JK, Gruber SB. Distinct molecular features of colorectal cancer in Ghana. Cancer Epidemiol. 2013;37:556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redon R, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AK, et al. Cytomegalovirus and Epstein-Barr virus in breast cancer. PLoS One. 2015;10(2):1–14.

    Article  Google Scholar 

  • Saridaki Z, Souglakos J, Georgoulias V. Prognostic and predictive significance of MSI in stages II/III colon cancer. World J Gastroenterol. 2014;20(22):6809–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Setaffy L, Langner C. Microsatellite instability in colorectal cancer: clinicopathological significance. Pol J Pathol. 2015;3:203–18.

    Article  Google Scholar 

  • Sforza V, et al. Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer. World J Gastroenterol. 2016;22(28):6345–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sjöblom T, et al. The consensus coding sequences of human breast and colorectal cancers. Science (New York, NY). 2006;314(5797):268–74.

    Article  Google Scholar 

  • Tafvizi F, Fard ZT, Assareh R. Original paper Epstein-Barr virus DNA in colorectal carcinoma in Iranian patients. Pol J Pathol. 2015;66(2):154–60.

    Article  PubMed  Google Scholar 

  • Taioli E, et al. Multi-institutional prostate cancer study of genetic susceptibility in populations of African descent. Carcinogenesis. 2011;32(9):1361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg DS, Newschaffer CJ, Topham A. Risk for colorectal cancer after gynecologic cancer. Ann Intern Med. 1999;131(3):189–93.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Powers S, Zhu W, Hannun YA. Substantial contribution of extrinsic risk factors to cancer development. Nature. 2016;529:43–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olufunso Adebola Adedeji MBBS, MD, FRCSEd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Adedeji, O.A. (2017). Cancer Genomic and Epigenomic Variations in Sub-Saharan Africa. In: Adedeji, O. (eds) Cancer in Sub-Saharan Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-52554-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52554-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52553-2

  • Online ISBN: 978-3-319-52554-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics