Skip to main content

Enhancing Usability Inspection Through Data-Mining Techniques: An Automated Approach for Detecting Usability Problem Patterns of Academic Websites

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10127))

Included in the following conference series:

Abstract

Usability is one of important attribute of software quality. It is associated with the “ease of use” of any system. Usability evaluation is becoming significant component of software development. Usability evaluation is performed through qualitative assessments. Qualitative assessments can be attained through Qualitative usability inspection (QUI). QUI methods emphasize on evaluating the interface of a specific system. These methods turn out to be complicated when huge number of systems related to similar context of use, are considered jointly to impart a general diagnosis. The principal cause for this is due to substantial quantity of information that should be conceptualized simultaneously. To handle substantial quantity of information, this paper proposes a novel approach that integrates QUI with automated woorank tool and data-mining techniques (association rules and decision tree). To validate this proposed approach, 50-academic websites are evaluated and usability problems patterns related to academic websites are identified by processing 2475 records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    QUIc represents Qualitative usability inspection for context of use.

  2. 2.

    Top-50 academic websites listed in National Institutional Ranking Framework are considered.

  3. 3.

    The detailed description of attribute along with categories are listed in Table 1.

  4. 4.

    https://www.nirfindia.org/univ.

  5. 5.

    In this approach, 7-different categories are considered, namely Design, Content, Navigation, Security, Search, Mobile, and Social Media, for evaluation of usability of academic websites.

  6. 6.

    Out of 50-top universities, woorank could not evaluate 5-universities due to some security reasons.

References

  1. International Organization for Standardization. ISO 9241-11: Ergonomic requirements for office work with visual display terminals (VDTs). Part 11: Guidance on usability. Geneva, Switzerland (1998)

    Google Scholar 

  2. ISO 9126: Information Technology Software Product Evaluation Quality Characteristics and Guidelines for their Use, Geneva (1991)

    Google Scholar 

  3. McCall, A.J., Richards, K.P., Walters, F.G.: Factors in Software Quality, vol. II. Rome Aid Defence Centre, Italy (1977)

    Google Scholar 

  4. Boëhm, B.: Characteristics of Software Quality. TRW Series on Software Technology, vol. 1. North-Holland, Amsterdam (1978)

    Google Scholar 

  5. Dumas, S.J., Redish, C.J.: A Practical Guide to Usability Testing. Intl. Specialized Book Service Inc, Portland (2000)

    Google Scholar 

  6. Maguire, M.: Context of use within usability activities. Int. J. Hum. Comput. Stud. 55, 453–483 (2001)

    Article  MATH  Google Scholar 

  7. Bevan, N., Kirakowsi, J., Maissel, J.: What is usability? In: Proceedings of the 4th International Conference on HCI, pp. 651–655 (1991)

    Google Scholar 

  8. Ivory, Y.M., Hearst, A.M.: The state of the art in automating usability evaluation of user interfaces. ACM Comput. Surv. 33, 470–516 (2001)

    Article  Google Scholar 

  9. Sauro, J., Kindlund, E.: A method to standardize usability metrics into a single score. ACM HCI (2005) [S12]

    Google Scholar 

  10. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1993)

    MATH  Google Scholar 

  11. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  12. Constantine, L., Lockwood, L.: Software for Use: A Practical Guide to the Models and Methods of Usage-Centered Design. Addison-Wesley, Reading (1999)

    Google Scholar 

  13. Mayhew, J.D.: The Usability Engineering Lifecycle: A Practioner’s Handbook for User Interface Design. Morgan Kaufmann, San Francisco (1999)

    Book  Google Scholar 

  14. González, M.P., Granollers, T., Lorés, J.: A hybrid approach for modelling early prototype evaluation under user-centred design through association rules. In: Doherty, G., Blandford, A. (eds.) DSV-IS 2006. LNCS, vol. 4323, pp. 213–219. Springer, Heidelberg (2007). doi:10.1007/978-3-540-69554-7_17

    Chapter  Google Scholar 

  15. Gonzalez, M.P., Lores, J., Granollers, A.: Enhanching usability testing through datamining techniques: a novel approach to detecting usability problem patterns for a context of use. Inf. Softw. Technol. 50, 547–568 (2008)

    Article  Google Scholar 

  16. Gonzalez, M.P., Granollers, T., Lores, J.: Métricas predictivas de la usabilidad: un nuevo enfoque para su ponderación cualitativa (available in Spanish). In: Proceedings of the VI Spanish Conference on Human Computer Interaction, pp. 233–241 (2005)

    Google Scholar 

  17. Tiedtke, T., Martin, C., Gerth, N.: Awusa: a tool for automated website usability analysis. In: 9th International Workshop DSVIS (2002)

    Google Scholar 

  18. Alipio, J., Pocas, J., Azevedo, P.: Recommendation with association rules: a web mining application. In: Data Mining and Warehouses Conference IS-2002 (2002)

    Google Scholar 

  19. Finlay, J.: Machine learning: a tool to support improved usability. Appl. Artif. Intell. 11, 633–665 (1997)

    Article  Google Scholar 

  20. Sikorski, M.: Beyond product usability: user satisfaction and quality management. In: CHI 2000 Extended Abstracts Human Factors Computing Systems, pp. 61–62. ACM Press (2000)

    Google Scholar 

  21. Moumane, K., Idri, A., Abran, A.: Usability evaluation of mobile applications using ISO 9241 and ISO 25062 standards. SpringerPlus. 5, 1–15 (2016)

    Article  Google Scholar 

  22. Jankowski, J., Grabowski, A.: Usability evaluation of vr interface for mobile robot teleoperation. Int. J. Hum. Comput. Interact. 31, 882–889 (2015)

    Article  Google Scholar 

  23. Ji, G.Y., Park, H.J., Lee, C.: A usability checklist for the usability evaluation of mobile phone user interface. Int. J. Hum. Comput. Interact. 3(3), 207–231 (2006)

    Article  Google Scholar 

  24. Kjeldskov, J., Stage, J.: New techniques for usability evaluation of mobile systems. Int. J. Hum. Comput. Stud. 60, 599–620 (2004). Elsevier

    Article  Google Scholar 

  25. Erickson, W., Trerise, S., Lee, C.: The accessibility and usability of college websites: is your website presenting barriers to potential students? Commun. Coll. J. Res. Pract. 37, 864–876 (2013)

    Article  Google Scholar 

  26. Fernandez, A., Insfran, E., Abrahão, S.: Usability evaluation methods for the web: a systematic mapping study. Inform. Softw. Technol. 53, 789–817 (2011). Elsevier

    Article  Google Scholar 

  27. Aziz, M.A., Isa, W.A.R.W.M., Nordin, N.: Accessing the accessibility and usability of malaysia higher education website. In: International Conference on User Science and Engineering, pp. 203–208. IEEE (2010)

    Google Scholar 

  28. Panach, I.J., Juristo, N., Valverde, F.: A framework to identify primitives that represent usability within model-driven development methods. Inform. Softw. Technol. 58, 338–354 (2015). Elsevier

    Article  Google Scholar 

  29. Lee, S., Cho, J.E.: Usability evaluation of Korean e-Government portal. In: Stephanidis, C. (ed.) UAHCI 2007. LNCS, vol. 4556, pp. 64–72. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73283-9_8

    Chapter  Google Scholar 

  30. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)

    MATH  Google Scholar 

  31. Woorank. https://www.woorank.com/

  32. Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  33. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  34. Mikut, R., Reischl, M.: Data mining tools: wiley interdisciplinary reviews. Data Min. Knowl. Disc. 1, 431–443 (2011)

    Article  Google Scholar 

  35. https://rapidminer.com/

  36. http://www.rdatamining.com/

  37. Demsar, J., Zupan, B., Leban, G.: Orange: From Experimental Machine Learning to Interactive Data Mining White Paper. Faculty of Computer and Information Science, University of Ljubljana (2004)

    Google Scholar 

  38. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  39. WEKA. http://www.cs.waikato.ac.nz/ml/weka/

  40. Mack, R., Nielsen, J.: Usability inspection methods. ACM SIGCHI Bull. 25(1), 28–33 (1993)

    Article  Google Scholar 

  41. Rivero, L., Barreto, R., Conte, T.: Characterizing usability inspection methods through the analysis of a systematic mapping study extension. Clei Electron. J. 16(1), 11 (2013)

    Google Scholar 

  42. Hollingsed, T., Novick, G.D.: Usability Inspection Methods after 15 Years of Research and Practice (2007)

    Google Scholar 

  43. Wharton, C., Rieman, J., Lewis, C., Polson, P.: Usability Inspection Methods: The Cognitive Walkthrough Method: A Practitioners Guide. Wiley, New York (1994)

    Google Scholar 

  44. Hornbæk, K.: Current practice in measuring usability: challenges to usability studies and research. Int. J. Hum. Comput. Stud. 64(2), 79–102 (2006)

    Article  Google Scholar 

  45. Paterno, F.: Model-Based Design and Evaluation of Interactive Application. Springer, New York (2000)

    Book  MATH  Google Scholar 

  46. Rosson, M., Carroll, J.: Usability Engineering: Scenario-Based Development of HCI. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  47. Sauro, J., Kindlund, E.: A method to standardize usability metrics into a single score. In: ACM HCI (2005)

    Google Scholar 

  48. Dubey, K.S., Gulati, A., Rana, A.: Usability evaluation of software systems using fuzzy multi-criteria approach. Int. J. Comput. Sci. Issues 9(3), 404 (2012). ISSN: 1694-0814

    Google Scholar 

  49. Dubey, K.S., Rana, A., Sharma, A.: Usability evaluation of object oriented software system using fuzzy logic approach. Int. J. Comput. Appl. 43(19), 35–41 (2012). ISSN: 0975-8887

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpna Sagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sagar, K., Saha, A. (2017). Enhancing Usability Inspection Through Data-Mining Techniques: An Automated Approach for Detecting Usability Problem Patterns of Academic Websites. In: Basu, A., Das, S., Horain, P., Bhattacharya, S. (eds) Intelligent Human Computer Interaction. IHCI 2016. Lecture Notes in Computer Science(), vol 10127. Springer, Cham. https://doi.org/10.1007/978-3-319-52503-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52503-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52502-0

  • Online ISBN: 978-3-319-52503-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics