Advertisement

A Proposal of an Academic Library Management System Based on an RDF Repository

  • Loredana MoceanEmail author
  • Vasile Paul Bresfelean
  • Mara Hajdu Macelaru
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 263)

Abstract

The application of Semantic Web technologies has the potential to overcome the limitations of classic WWW architectures and can be used to build Web portals with enhanced semantic interoperability. This paper proposes an innovative approach to implement e-learning portals components using state of the art Semantic Web technologies. We propose a new architecture in which a number of components are to be described and modeled using the Linked Data technological space built around RDF [24]. Creating and incorporating a virtual library based on RDF allows the combination of semantic links between resources, with the possibility of extending these semantics. At the application level, there will be entities capable of processing information in an intelligent manner and capable of reasoning, thus offering complex services like data search, resources retrieval, monitoring applications’ activities or information filtering for both machines and people.

Keywords

Semantic Web RDF Database Academic portal requirements Virtual library 

Notes

Acknowledgement

The present research was supported by the PNII-RU-TE-2014-4-2640 UEFISCDI grant “eTrajectory – students’ professional trajectory”.

References

  1. 1.
    Buchmann, R.A., Szekely, A., Pulcher, D.: Temporary belief sets management in adaptive training systems. In: Abramowicz, W., Maciaszek, L., Węcel, K. (eds.) BIS 2011. LNBIP, vol. 97, pp. 99–110. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25370-6_10 CrossRefGoogle Scholar
  2. 2.
    Reynolds, D., Shabajee, P., Cayzer, S.: Semantic Information Portals (2016). http://www2004.wwwconference.org/docs/2p290.pdf
  3. 3.
    Gayo, J., Jeuring, J., Rodríguez, J.M.Á.: Inductive representations of RDF graphs. Sci. Comput. Program. 95(2014), 135–146 (2014)CrossRefGoogle Scholar
  4. 4.
    Bae, M., Kang, S., et al.: Semantic similarity method for keyword query system on RDF. Neurocomputing 146(2014), 264–275 (2014)CrossRefGoogle Scholar
  5. 5.
    Sancho, P., Martínez, I., Fernández-Manjón, B.: Semantic web technologies applied to e-learning. J. Univers. Comput. Sci. 11(9), 1470 (2005)Google Scholar
  6. 6.
    Kisung, K., Bongki, M., Hyoung-Joo, K.: RG-index: an RDF graph index for efficient SPARQL query processing. Expert Syst. Appl. 41, 4596–4607 (2014)CrossRefGoogle Scholar
  7. 7.
    Xiang, L., De Hoyos, E., Chebotko, A., Bin, F., Reilly, K.: k-nearest keyword search in RDF graphs. Web Semant. Sci. Serv. Agents World Wide Web 22, 40–56 (2013)CrossRefGoogle Scholar
  8. 8.
    Spanos, D.E., Stavrou, P.S., Mitrou, P.: Bringing relational databases into the semantic web: a survey. Semant. Web 1–41 (2016). IOS PressGoogle Scholar
  9. 9.
    Arenas, M., Graub, B.C., Kharlamov, E., Marciuška, S., Zheleznyakov, D.: Faceted search over RDF-based knowledge graphs. Web Semant. Sci. Serv. Agents World Wide Web 37–38, 55 (2015)Google Scholar
  10. 10.
    Wang, D., Zou, L., Zhao, D.: Top-k queries on RDF graphs. Inf. Sci. 316, 201–217 (2015)CrossRefGoogle Scholar
  11. 11.
    Kumar, A.P., Kumar, A., Vipin, K.N.: Architecting and designing of semantic web based application using the JENA and PROTÉGÉ – a comprehensive study. Int. J. Comput. Sci. Inf. Technol. 2(3), 1279 (2011)Google Scholar
  12. 12.
    Myungjin, L., Wooju, K., Hong, J.S., Park, S.: Semantic association-based search and visualization method on the semantic web portal. Int. J. Comput. Netw. Commun. (IJCNC) 2(1), January 2010Google Scholar
  13. 13.
    SPARQL Query Language for RDF (2016). https://www.w3.org/TR/2006/WD-rdf-sparql-query-20061004/
  14. 14.
    Sesame official site (2016). http://rdf4j.org/
  15. 15.
    Benjamins, R., Contreras, J., Corcho, O., Gómez-Pérez, A.: Six challenges for the semantic web. In: Proceedings of the First International Semantic Web Conference, SWC2002, Cerdena, Italia (2002). ISBN 978-3-540-43760-4Google Scholar
  16. 16.
    Relational Databases on the Semantic Web (2016). https://www.w3.org/DesignIssues/RDB-RDF.html
  17. 17.
    A Direct Mapping of Relational Data to RDF, https://www.w3.org/TR/rdb-direct-mapping/
  18. 18.
    D2RQ Accessing Relational Databases as Virtual RDF Graphs (2016). http://d2rq.org/
  19. 19.
    Fayed, G., Sameh, D., Ahmad, H., Jihad, M., et al.: e-learning model based on semantic web technology. Int. J. Comput. Inf. Sci. 4, 63 (2006)Google Scholar
  20. 20.
    Changtao, Q., Wolfgang, N., Schinzel, N.: Integrating schema-specific native XML repositories into a RDF-based e-learning P2P network. Proc. Int. Conf. Dublin Core Metadata e-Communities (2002)Google Scholar
  21. 21.
    De Virgilio, R., Maccioni, A., Torlone, R.: Converting Relational to Graph Databases (2016). http://www.inf.uniroma3.it/~torlone/pubs/grades2014.pdf
  22. 22.
    Heath, T., Bizer, T.C.: Linked Data: Evolving the Web into a Global Data Space (2016). http://linkeddatabook.com/editions/1.0/
  23. 23.
    Turtle - Terse RDF Triple Language (2016). https://www.w3.org/TeamSubmission/turtle/
  24. 24.
  25. 25.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Loredana Mocean
    • 1
    Email author
  • Vasile Paul Bresfelean
    • 1
  • Mara Hajdu Macelaru
    • 2
  1. 1.Faculty of Economics and Business AdministrationBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.North University Baia MareBaia MareRomania

Personalised recommendations