Classification of Data Analysis Tasks for Production Environments

  • Sebastian EckertEmail author
  • Jan Fabian Ehmke
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 263)


In the age of “Industry 4.0”, the rising amount of data from production environments is primarily used to control the operational production environment. However, companies frequently do not exploit the data’s potential for strategic and tactical decision making. A possible reason is that many data analysis tools follow a method-centric perspective, which is not compatible with the problem-centric view of the tasks of a particular department. This dissertation project investigates the theoretical and practical improvement of data analysis processes in industrial corporations. To overcome these often distinct perspectives and foster the implementation of state-of-the-art methods of data analysis such as data mining, we propose the standardization of data analysis tasks in industrial corporations by construction of a reference model that can help building data analysis tools. As a first step, we survey different types of analysis tasks arising in the environment of the automotive industry, namely the AUDI AG.


Data analysis tasks Reference modeling Business analytics 


  1. 1.
    Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industrie 4.0. WI 56, 261–264 (2014)Google Scholar
  2. 2.
    Kemper, H.-G., Mehanna, W., Baars, H.: Business Intelligence - Grundlagen und praktische Anwendungen. Eine Einführung in die IT-basierte Managementunterstützung. Vieweg+Teubner, Wiesbaden (2010)CrossRefGoogle Scholar
  3. 3.
    Lenz, H.J., Müller, R.M.: Business Intelligence. Springer, Heidelberg (2012)Google Scholar
  4. 4.
    Scheer, A.-W.: Wirtschaftsinformatik. Referenzmodelle für industrielle Geschäftsprozesse. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Fayyad, U.M.: Advances in Knowledge Discovery and Data Mining. MIT Press, Menlo Park (1996)Google Scholar
  6. 6.
    Chapman, P.: The CRISP-DM User Guide.
  7. 7.
    Schütte, R.: Grundsätze ordnungsmäßiger Referenzmodellierung. Gabler, Wiesbaden (1998)CrossRefGoogle Scholar
  8. 8.
    Becker, J. (ed.): Referenzmodellierung: Grundlagen, Techniken und domänenbezogene Anwendung. Physica-Verlag, Heidelberg (2004)Google Scholar
  9. 9.
    Ferstl, O.K., Sinz, E.J.: Grundlagen der Wirtschaftsinformatik. Oldenbourg, R, München (2013)CrossRefGoogle Scholar
  10. 10.
    Gluchowski, P., Gabriel, R., Dittmar, C.: Management-Support-Systeme und Business Intelligence: Computergestützte Informationssysteme für Fach- und Führungskräfte. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Berthold, M., Hand, D.J.: Intelligent Data Analysis: An Introduction. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Mariscal, G., Marbán, Ó., Fernández, C.: A survey of data mining and knowledge discovery process models and methodologies. Knowl. Eng. Rev. 25, 137–166 (2010)CrossRefGoogle Scholar
  13. 13.
    Provost, F., Fawcett, T.: Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking. O’Reilly & Associates, Sebastopol (2013)Google Scholar
  14. 14.
    Schildhauer, T.: Business Intelligence: Durch E-Business Strategien und Prozesse verbessern. BusinessVillage, Göttingen (2004)Google Scholar
  15. 15.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)Google Scholar
  16. 16.
    Frank, U., Strecker, S., Fettke, P., Brocke, J., Becker, J., Sinz, E.: Das Forschungsfeld „Modellierung betrieblicher Informationssysteme“. WI 56, 49–54 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department Information SystemsFU BerlinBerlinGermany

Personalised recommendations