A Bayesian Network Approach to Assessing the Risk and Reliability of Maritime Transport

  • Milena StróżynaEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 263)


The paper presents a conception of a doctoral dissertation, which concerns the problem of estimation of maritime risk and reliability of maritime transport services. In the dissertation a method for dynamic risk assessment based on the Bayesian Network approach is presented. The method concern the risk of an individual ship and its aim is to identify ships, which pose a potential threat due to their individual behaviour and characteristics. Within the article, the following aspects of the dissertation are presented: motivation standing behind the research, main assumptions for the proposed method, its novelty in comparison to existing solutions as well as preliminary results.


Bayesian Network Enterprise Architecture Transport Service Automatic Identification System Accident Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Krzysztof, F., Sokołowski, W.: Środki transportu morskiego w zapewnieniu bezpieczeństwa dostaw gazu ziemnego. Logistyka 401 (2012)Google Scholar
  2. 2.
    el Pozo, F., Dymock, A., Feldt, L., Hebrard, P., di Monteforte, F.S.: Maritime surveillance in support of CSDP. Technical report, European Defence Agency (2010)Google Scholar
  3. 3.
    Urbański, J., Morgaś, W., Specht, C.: Bezpieczeństwo morskie – ocena i kontrola ryzyka. Zeszyty Naukowe Akademii Marynarki Wojennej 2(173), 53–68 (2008)Google Scholar
  4. 4.
    Goerlandt, F., Montewka, J.: Maritime transportation risk analysis: review and analysis in light of some foundational issues. Reliab. Eng. Syst. Saf. 138, 115–134 (2015)CrossRefGoogle Scholar
  5. 5.
    Trucco, P., Cagno, E., Ruggeri, F., Grande, O.: A Bayesian belief network modelling of organisational factors in risk analysis: a case study in maritime transportation. Reliab. Eng. Syst. Saf. 93(6), 823–834 (2008)CrossRefGoogle Scholar
  6. 6.
    Berle, O.Y., Asbjørnslett, B.R.E., Rice, J.B.: Formal vulnerability assessment of a maritime transportation system. Reliab. Eng. Syst. Saf. 96(6), 696–705 (2011)CrossRefGoogle Scholar
  7. 7.
    Ellis, J., Forsman, B., Gehl, S., Langbecker, U., Riedel, K., Sames, P.C.: A risk model for the operation of container vessels. WMU J. Marit. Aff. 7(1), 133–149 (2008)CrossRefGoogle Scholar
  8. 8.
    ABS: Guidance notes on Risk Assessement Applications for the Marine and Offshore Oil and Gas Industries. Technical report, American Bureau of Shipping (2000)Google Scholar
  9. 9.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)CrossRefGoogle Scholar
  10. 10.
    Laxhammar, R., Falkman, G.: Conformal prediction for distribution-independent anomaly detection in streaming vessel data. In: Proceedings of the First International Workshop on Novel Data Stream Pattern Mining Techniques, pp. 47–55. ACM (2010)Google Scholar
  11. 11.
    Lee, C.J., Lee, K.J.: Application of bayesian network to the probabilistic risk assessment of nuclear waste disposal. Reliab. Eng. Syst. Saf. 91(5), 515–532 (2006)CrossRefGoogle Scholar
  12. 12.
    Soares, C.G., Teixeira, A.P.: Risk assessment in maritime transportation. Reliab. Eng. Syst. Saf. 74(3), 299–309 (2001)CrossRefGoogle Scholar
  13. 13.
    Balmat, J.F., Lafont, F., Maifret, R., Pessel, N.: MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor. Ocean Eng. 36(15–16), 1278–1286 (2009)CrossRefGoogle Scholar
  14. 14.
    Elsayed, T.: Fuzzy inference system for the risk assessment of liquefied natural gas carriers during loading/offloading at terminals. Appl. Ocean Res. 31(3), 179–185 (2009)CrossRefGoogle Scholar
  15. 15.
    Mascaro, S., Nicholson, A.E., Korb, K.B.: Anomaly detection in vessel tracks using bayesian networks. Int. J. Approx. Reasoning 55(1), 84–98 (2014)CrossRefGoogle Scholar
  16. 16.
    Pollino, C.A., Woodberry, O., Nicholson, A., Korb, K., Hart, B.T.: Parameterisation and evaluation of a bayesian network for use in an ecological risk assessment. Environ. Model. Softw. 22(8), 1140–1152 (2007)CrossRefGoogle Scholar
  17. 17.
    Grêt-Regamey, A., Straub, D.: Spatially explicit avalanche risk assessment linking bayesian networks to a GIS. Nat. Hazards Earth Syst. Sci. 6(6), 911–926 (2006)CrossRefGoogle Scholar
  18. 18.
    Straub, D., et al.: Natural hazards risk assessment using bayesian networks. Saf. Reliab. Eng. Systems Struct., 2535–2542 (2005)Google Scholar
  19. 19.
    Liu, K.F.R., Lu, C.F., Chen, C.W., Shen, Y.S.: Applying Bayesian belief networks to health risk assessment. Stoch. Env. Res. Risk Assess. 26(3), 451–465 (2012)CrossRefGoogle Scholar
  20. 20.
    Weber, P., Medina-Oliva, G., Simon, C., Iung, B.: Overview on bayesian networks applications for dependability, risk analysis and maintenance areas. Eng. Appl. Artif. Intell. 25(4), 671–682 (2012)CrossRefGoogle Scholar
  21. 21.
    Kowalski, J., Kozera, J.: Mapa zagrożeń bezpieczeństwa energetycznego RP w sektorach ropy naftowej i gazu ziemnego. In: Bezpieczeństwo Narodowe, pp. 301–324. BBN, Warszawa (2009)Google Scholar
  22. 22.
    Alan, H., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)Google Scholar
  23. 23.
    Eleye-Datubo, A.G., Wall, A., Wang, J.: Marine and offshore safety assessment by incorporative risk modeling in a fuzzy-Bayesian network of an induced mass assignment paradigm. Risk Anal. 28(1), 95–112 (2008)CrossRefGoogle Scholar
  24. 24.
    Friedman, N., Koller, D.: Being Bayesian about network structure. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 201–210. Morgan Kaufmann Publishers Inc. (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Poznań University of Economics and BusinessPoznańPoland

Personalised recommendations