An Architectural Model for High Performance Pattern Matching in Linked Historical Data

  • Michael Aleithe
  • Ulrich Hegerl
  • Galina IvanovaEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 263)


In times of global digitalization and interconnectedness the virtual Cyber Physical Systems (CPS) are getting more and more on importance. These CPS and their relations among themselves can be investigated using appropriate data acquired by the inherent sensors. The multivariate, multiscale, multimodal sensor data can be modeled and analyzed as a dynamically evolving spatio-temporal complex network. These graphs as well as the patterns estimated in historical data can then be used for real time comparison with momentary computed patterns. Therefore providing linked data from memory is an important need to accomplish real time constraints especially in case of CPS in critical medical systems. Since the handling of graphs in the traditional relational database systems is problematic an encouraging approach is the storage of these data in graph databases which are appropriate for the handling of linked data. Therefore we propose the graph database Neo4J and demonstrate first applications of the approach within medical use-cases.


Cyber physical systems Sensor networks Body area networks Spatio-temporal sensor graph Graph databases 


  1. 1.
    BGBl. Teil I Nr. 54: Gesetz für sichere digitale Kommunikation und Anwendungen im Gesundheitswesen sowie zur Änderung weiterer Gesetze (21 December 2015)Google Scholar
  2. 2.
    George, B., Kang, J.M., Shekhar, S.: Spatio-temporal sensor graphs (STSG): a data model for the discovery of spatio-temporal patterns. Intell. Data Anal. Knowl. Disc. Data Streams 13(3), 457–475 (2009). IOS Press, AmsterdamGoogle Scholar
  3. 3.
    Patil, S., Vaswani, G., Bhatia, A.: Graph databases - an overview. Int. J. Comput. Sci. Inf. Technol. 5(1), 657–660 (2012)Google Scholar
  4. 4.
    Batra, S., Tyagi, C.: Comparative analysis of relational and graph databases. Int. J. Soft Comput. Eng. (IJSCE) 2(2), 509–512 (2012)Google Scholar
  5. 5.
    Park, Y., Shankar, M., Park, B., Ghosh, J.: Graph Databases for large-scale healthcare systems: a framework for efficient data management and data services. In: IEEE 30th International Conference on Data Engineering Workshops (ICDEW), Chicago, IL, USA, pp. 12–19 (2014)Google Scholar
  6. 6.
    Ciglan, M. Averbuch, A., Hluchy, L.: Benchmarking traversal operations over graph databases. In: IEEE International Conference on Data Engineering Workshops (ICDEW), Arlington, VA, USA, pp. 186–189 (2012)Google Scholar
  7. 7.
    Rodriguez, M.A., Neubauer, P.: The Graph Traversal Pattern (2010)Google Scholar
  8. 8.
    McColl, R., Ediger, D., Poove, J., Campbel, D., Bader, D.A.: A performance evaluation of open source graph databases. In: Proceedings of the 2014 Workshop on Parallel Programming for Analytics Applications, PPAA 2014, Orlando, Florida, USA, pp. 11–18. Association for Computing Machinery, New York (2014)Google Scholar
  9. 9.
    Macko, P., Margo, D., Seltzer, M.: Performance introspection of graph databases. In: The 6th International Systems and Storage Conference, Haifa, Israel (2013)Google Scholar
  10. 10.
  11. 11.
  12. 12.
    Archambault, D., Purchase, H.C.: The “Map” in the mental map. Experimental results in dynamic graph drawing. Int. J. Hum. Comput. Stud. 71(11), 1044–1055 (2013)CrossRefGoogle Scholar
  13. 13.
    Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V., Baleta, P., Larriba-Pey, J.L.: A discussion on the design of graph database benchmarks. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 25–40. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18206-8_3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Aleithe
    • 1
  • Ulrich Hegerl
    • 2
  • Galina Ivanova
    • 1
    • 3
    Email author
  1. 1.Institut für WirtschaftsinformatikUniversität LeipzigLeipzigGermany
  2. 2.Stiftung Deutsche DepressionshilfeLeipzigGermany
  3. 3.Institut für Angewandte Informatik (InfAI) e.V.Universität LeipzigLeipzigGermany

Personalised recommendations