Advertisement

Performance Evaluation of Sentiment Analysis Methods for Brazilian Portuguese

  • Douglas Cirqueira
  • Antonio JacobJr.Email author
  • Fábio Lobato
  • Adamo Lima de Santana
  • Márcia Pinheiro
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 263)

Abstract

Daily, a big data of media, thoughts and opinions can be noticed on Online Social Networks (OSN), resulting from their user’s interaction and sharing of information. In Brazil, this is strongly observed, as Brazilians are often active on the Internet. The business and academic communities around the world are aware of these events, due their possibilities to improve social customer relationship management. Therefore, this work aims to show a performance comparison between algorithms for Sentiment Analysis (SA), in their Portuguese and English versions, with datasets composed of Brazilian Portuguese comments from OSN, and their translations. The results highlight the need for proposals in specific language and Social Media context, given the performance presented by Portuguese version methods.

Keywords

Natural language processing Text mining Sentiment analysis Opinion mining Data mining 

References

  1. 1.
    Lai, L.S., Turban, E.: Groups formation and operations in the Web 2.0 environment and social networks. Group Decis. Negot. 17(5), 387–402 (2008)CrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Mostafa, M.M.: More than words: social networks’ text mining for consumer brand sentiments. Expert Syst. Appl. 40(10), 4241–4251 (2013)CrossRefGoogle Scholar
  5. 5.
    Heller Baird, C., Gautam, P.: From social media to social customer relationship management. Strategy Leadersh. 39(5), 30–37 (2011)CrossRefGoogle Scholar
  6. 6.
    Garrigos, F., Gil, I., Narangajavana, Y.: The impact of social networks in the competitiveness of the firms. In: Beckford, A.M., Larsen, J.P. (eds.) Competitiveness: Psychology, Production, Impact and Global Trends. Nova Science Publishers, Hauppauge (2011)Google Scholar
  7. 7.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–35 (2008)CrossRefGoogle Scholar
  8. 8.
    Hearst, M.A.: Direction-based text interpretation as an information access refinement. In: Text-based Intelligent Systems: Current Research and Practice in Information Extraction and Retrieval, pp. 257–274 (1992)Google Scholar
  9. 9.
  10. 10.
    Silva, Mário, J., Carvalho, P., Sarmento, L.: Building a sentiment lexicon for social judgement mining. In: Caseli, H., Villavicencio, A., Teixeira, A., Perdigão, F. (eds.) PROPOR 2012. LNCS, vol. 7243, pp. 218–228. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28885-2_25 CrossRefGoogle Scholar
  11. 11.
    Cambria, E., Speer, R., Havasi, C., Hussain, A.: SenticNet: a publicly available semantic resource for opinion mining. In: AAAI Fall Symposium: Common Sense Knowledge, vol. 10 (2010)Google Scholar
  12. 12.
    Ribeiro, F.N., Araújo, M., Gonçalves, P., Benevenuto, F., Gonçalves, M.A.: A benchmark comparison of state-of-the-practice sentiment analysis methods. arXiv preprint arXiv:1512.01818 (2015)
  13. 13.
    Balage, P.P.F., Pardo, T.A., Aluısio, S.M.: An evaluation of the Brazilian Portuguese LIWC dictionary for sentiment analysis. In: Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology (STIL), pp. 215–219 (2013)Google Scholar
  14. 14.
    Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: LIWC 2001, vol. 71. Lawrence Erlbaum Associates, Mahway (2001)Google Scholar
  15. 15.
    Hu, M., Liu, B.: Mining opinion features in customer reviews. AAAI 4(4), 755–760 (2004)Google Scholar
  16. 16.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  17. 17.
    Thelwall, M.: Heart and soul: sentiment strength detection in the social web with sentistrength. In: Proceedings of the CyberEmotions, pp. 1–14 (2013)Google Scholar
  18. 18.
    Hutto, C.J., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: 8th International AAAI Conference on Weblogs and Social Media (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Douglas Cirqueira
    • 1
  • Antonio JacobJr.
    • 2
    Email author
  • Fábio Lobato
    • 3
  • Adamo Lima de Santana
    • 1
  • Márcia Pinheiro
    • 1
  1. 1.Electrical and Computer Engineering Department, ITECFederal University of ParáBelémBrazil
  2. 2.Technological Sciences CenterState University of MaranhãoSão LuísBrazil
  3. 3.Federal University of Western ParáSantarémBrazil

Personalised recommendations