Advertisement

Do You Write What You Are in Business Communications? Deriving Psychometrics from Enterprise Social Networks

  • Janine Viol HackerEmail author
  • Alexander Piazza
  • Trevor Kelley
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 263)

Abstract

In this paper, we explore the discriminability of psychometrics derived from an automated linguistic analysis within a business setting. To this end, a commercial natural language processing application is used to analyse messages posted to the Enterprise Social Network (ESN) of an Australian professional services firm. Comparing the psychometrics derived for individual users with those of other users, we find that the text posted to the ESN facilitates the detection of distinguishable personality profiles. Also, our analysis indicates the derived psychometrics to remain stable from year to year.

Keywords

Enterprise Social Network Personality Big Five Natural language processing IBM Watson Personality Insights 

References

  1. 1.
    Amichai-Hamburger, Y., Vinitzky, G.: Social network use and personality. Comput. Human Behav. 26, 1289–1295 (2010)CrossRefGoogle Scholar
  2. 2.
    Argamon, S., Koppel, M., Pennebaker, J.W., Schler, J.: Automatically profiling the author of an anonymous text. Commun. ACM 52, 119–123 (2009)CrossRefGoogle Scholar
  3. 3.
    Behrendt, S., Richter, A., Trier, M.: Mixed methods analysis of enterprise social networks. Comput. Netw. 75, 560–577 (2014)CrossRefGoogle Scholar
  4. 4.
    Berger, K., Klier, J., Klier, M., Richter, A.: “Who is Key..?” - Characterizing value adding users in enterprise social networks. In: Proceedings of the European Conference on Information Systems, Tel Aviv, Israel (2014)Google Scholar
  5. 5.
    Burns, M.J., Kotval, X.P.: Questions about questions: investigating how knowledge workers ask and answer questions. Bell Labs Tech. J. 17, 43–61 (2013)CrossRefGoogle Scholar
  6. 6.
    Calmbach, L., Bodendorf, F.: The impact of personality traits on the individual preference of e-learning tools. In: 2014 Annual SRII Global Conference, pp. 139–143. IEEE (2014)Google Scholar
  7. 7.
    Cobb-Clark, D.A., Schurer, S.: The stability of big-five personality traits. Econ. Lett. 115, 11–15 (2012)CrossRefGoogle Scholar
  8. 8.
    Colbert, A.E., Barrick, M.R., Bradley, B.H.: Personality and leadership composition in top management teams: implications for organizational effectiveness. Pers. Psychol. 67, 351–387 (2014)CrossRefGoogle Scholar
  9. 9.
    Estival, D., Gaustad, T., Hutchinson, B., Pham, S.B., Radford, W.: Author profiling for English emails. In: Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics, pp. 263–272 (2007)Google Scholar
  10. 10.
    Golbeck, J., Robles, C., Edmondson, M., Turner, K.: Predicting personality from Twitter. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing. IEEE (2011)Google Scholar
  11. 11.
    Goldberg, L.R.: The structure of phenotypic personality traits. Am. Psychol. 48, 26–34 (1993)CrossRefGoogle Scholar
  12. 12.
    Goldberg, L.R., Johnson, J.A., Eber, H.W., Hogan, R., Ashton, M.C., Cloninger, C.R., Gough, H.G.: The international personality item pool and the future of public-domain personality measures. J. Res. Pers. 40, 84–96 (2006)CrossRefGoogle Scholar
  13. 13.
    Holtzblatt, L., Drury, J., Weiss, D.: Evaluating the uses and benefits of an enterprise social media platform. J. Soc. Media. Organ. 1, 1–2 (2013)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    IBM: Personality Insights - The science behind the service (2016). http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/doc/personality-insights/science.shtml
  17. 17.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! the challenges and opportunities of social media. Bus. Horiz. 53, 59–68 (2010)CrossRefGoogle Scholar
  18. 18.
    Kichuk, S.L., Wiesner, W.H.: The big five personality factors and team performance: implications for selecting successful product design teams. J. Eng. Technol. Manage. 14, 195–221 (1997)CrossRefGoogle Scholar
  19. 19.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. In: Proceedings of the National Academy of Sciences, pp. 5802–5805 (2013)Google Scholar
  20. 20.
    LePine, J.A., Buckman, B.R., Crawford, E.R., Methot, J.R.: A review of research on personality in teams: accounting for pathways spanning levels of theory and analysis. Hum. Resour. Manage. Rev. 21, 311–330 (2011)CrossRefGoogle Scholar
  21. 21.
    Leonardi, P.M., Huysman, M., Steinfield, C.W.: Enterprise social media: definition, history, and prospects for the study of social technologies in organizations. J. Comput. Commun. 19, 1–19 (2013)Google Scholar
  22. 22.
    Matzler, K., Renzl, B., Müller, J., Herting, S., Mooradian, T.A.: Personality traits and knowledge sharing. J. Econ. Psychol. 29, 301–313 (2008)CrossRefGoogle Scholar
  23. 23.
    McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harv. Bus. Rev. 90, 60–68 (2012)Google Scholar
  24. 24.
    McCrae, R.R., Costa, P.T.: Personality in Adulthood. Guilford Press, New York (1990)Google Scholar
  25. 25.
    McCrae, R.R., John, O.P.: An introduction to the five-factor model and its applications. J. Pers. 60, 175–215 (1992)CrossRefGoogle Scholar
  26. 26.
    Moore, K., McElroy, J.C.: The influence of personality on Facebook usage, wall postings, and regret. Comput. Human Behav. 28, 267–274 (2012)CrossRefGoogle Scholar
  27. 27.
    Neuman, G.A., Wagner, S.H., Christiansen, N.D.: The relationship between work-team personality composition and the job performance of teams. Gr. Organ. Manage. 24, 28–45 (1999)CrossRefGoogle Scholar
  28. 28.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2015)Google Scholar
  29. 29.
    Richter, A., Riemer, K.: The contextual nature of enterprise social networking: a multi case study comparison. In: Proceedings of the European Conference on Information Systems, Utrecht, Netherlands (2013)Google Scholar
  30. 30.
    Riemer, K., Scifleet, P.: Enterprise social networking in knowledge-intensive work practices: a case study in a professional service firm. In: 23rd Australasian Conference on Information Systems (2012)Google Scholar
  31. 31.
    Thom, J., Helsley, S.Y., Matthews, T.L., Daly, E., Millen, D.: What are you working on? Status message Q&A in an enterprise SNS. In: Bødker, S., Bouvin, N.O., Wulf, V., Ciolfi, L., Lutters, W. (eds.) ECSCW 2011: Proceedings of the 12th European Conference on Computer Supported Cooperative Work, pp 313–332. Springer, London (2011). doi: 10.1007/978-0-85729-913-0_17 Google Scholar
  32. 32.
    Viol, J., Bernsmann, R., Riemer, K.: Behavioural dimensions for discovering knowledge actor roles utilising enterprise social network metrics. In: 26th Australasian Conference on Information Systems (2015)Google Scholar
  33. 33.
    Wehrli, S.: Personality on Social Network Sites: An Application of the Five Factor Model. ETH Zurich Sociology Working Paper. ETH Zurich, Zurich (2008)Google Scholar
  34. 34.
    Yarkoni, Y.: Personality in 100,000 words: a large-scale analysis of personality and word use among bloggers. J. Res. Pers. 44, 363–373 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Janine Viol Hacker
    • 1
    Email author
  • Alexander Piazza
    • 1
  • Trevor Kelley
    • 2
  1. 1.Institute of Information SystemsUniversity of Erlangen-NürnbergNürnbergGermany
  2. 2.Deloitte Touche TohmatsuSydneyAustralia

Personalised recommendations