Information Quality Framework for the Design and Validation of Data Flow Within Business Processes - Position Paper

  • Michael VakninEmail author
  • Agata Filipowska
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 263)


Poor data quality may be a cause for problems in organizational processes. There are numerous methods to assess and improve quality of data within information systems, however they often do not address the original source of these problems. This paper presents a conceptual solution for dealing with the data quality issue within information systems. It focuses on analysis of business processes being a source of requirements for information systems design and development. This analysis benefits information quality requirements, in order to improve data quality within systems emerging from these requirements.


Data/information quality Business process modeling IS/IT alignment IS/IT design Data quality dimensions 


  1. 1.
    van der Aalst W.M.P.: Discovering coordination patterns using process mining. In: Bocchi, L., Ciancarini, P. (eds.) First International Workshop on Coordination and Petri Nets (PNC 2004), CNR Pisa, Italy, pp. 49–64 (2004)Google Scholar
  2. 2.
    van der Aalst, W.M.P.: Business alignment: using process mining as a tool for Delta analysis and conformance testing. Requir. Eng. 10, 198–211 (2005)CrossRefGoogle Scholar
  3. 3.
    Aalst, W.M.P.: Challenges in business process analysis. In: Filipe, J., Cordeiro, J., Cardoso, J. (eds.) ICEIS 2007. LNBIP, vol. 12, pp. 27–42. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88710-2_3 CrossRefGoogle Scholar
  4. 4.
    Blake, R., Mangiameli, P.: The effects and interactions of data quality and problem complexity on classification. J. Data Inf. Qual. (JDIQ), 2(2) (2011) Google Scholar
  5. 5.
    Cao, L., Zhu, H.: Normal accident: data quality problems in ERP-enabled manufacturing. ACM J. Data Inf. Qual. 4(3) (2013). Article 11Google Scholar
  6. 6.
    Cappiello, C., Caro, A., Rodríguez, A., Caballero, I.: An approach to design business processes addressing data quality issues. In: Proceedings of the 21st European Conference on Information Systems (ECIS 2013), Utrecht, 5–8 June 2013, pp. 1–12 (2013)Google Scholar
  7. 7.
    Caro, A., Rodríguez, A., Cappiello, C., Caballero, I.: Designing business processes able to satisfy data quality requirements. In: Proceedings of the 17th International Conference on Information Quality (ICIQ). Paris (2012)Google Scholar
  8. 8.
    Chandrasekaran, S., Gudlavalleti, S., Kaniyar, S.: Achieving success in large complex software projects. McKinsey & Company, pp. 1–5, July 2014Google Scholar
  9. 9.
    Daoudi, F., Nurcan, S.: A benchmarking framework for methods to design flexible business processes. Softw. Process Improv. Pract. 12(1), 51–63 (2007)CrossRefGoogle Scholar
  10. 10.
    DeLone, W.H., McLean, E.R.: Information systems success: the quest for the dependent variable. Inf. Syst. Res. 3(1), 60–95 (1992)CrossRefGoogle Scholar
  11. 11.
    DeLone, W.H., McLean, E.R.: The DeLone and McLean Model of information systems success: a ten-year update. J. Manag. Inf. Syst. 19(4), 9–30 (2003)Google Scholar
  12. 12.
    English, L.P.: Information quality management: the next frontier. In: ASQ - Annual Quality Congress, Charlotte, vol. 55, pp. 529–533, May 2001Google Scholar
  13. 13.
    Fisher, C., Chengular-Smith, I., Ballou, D.: The impact of experience and time on the use of data quality information in decision making. J. Inf. Syst. Res. 14(2), 170–188 (2003)CrossRefGoogle Scholar
  14. 14.
    Fisher, C., Kingma, B.: Criticality of data quality as exemplified in two disasters. J. Inf. Manag. 39, 109–116 (2001)CrossRefGoogle Scholar
  15. 15.
    Frank, A.U.: Analysis of dependence of decision quality on data quality. J. Geogr. Syst. 10, 71–88 (2008)CrossRefGoogle Scholar
  16. 16.
    Gartner Group: Measuring the Business Value of Data Quality. Gartner Inc., Stamford (2011)Google Scholar
  17. 17.
    Glowalla, P., Sunyaev, A.: Process-driven data quality management – integration of data quality into existing process models. Bus. Inf. Syst. Eng. (BISE) 5(6), 433–448 (2013)CrossRefGoogle Scholar
  18. 18.
    Govil, J., Govil, J.: Data management: issues and solutions for workflow efficiency. In: SpringSim, 2008, pp. 307–312 (2008)Google Scholar
  19. 19.
    Ibrahim, R., Ayazi, E., Nasrmalek, S., Nakha, S.: An investigation of critical failure factors in information technology projects. J. Bus. Manag. 10(3), 87–92 (2013)Google Scholar
  20. 20.
    Kahn, B.K., Strong, D.M., Wang, R.Y.: Information quality benchmarks: product and service performance. Commun. ACM 45(4), 184–192 (2002)CrossRefGoogle Scholar
  21. 21.
    Kappelman, L., McKeeman, R., Zhang, L.: Early warning signs of IT project failure: the dangerous dozen. EDPACS (EDP Audit, Control, and Security) 40(6), 17–25 (2009)Google Scholar
  22. 22.
    Kaur, R., Sengupta, J.: Software process models and analysis on failure of software development projects. Int. J. Sci. Eng. Res. 2(2), 1–4 (2011)Google Scholar
  23. 23.
    Kleiner, N.: Delta analysis with workflow logs: aligning business process prescriptions and their reality. Requir. Eng. 10, 212–222 (2005)CrossRefGoogle Scholar
  24. 24.
    Laranjeiro, L., Soydemir, S.N., Bernardino, J.: A survey on data quality: classifying poor data. In: Conference: The 21st IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2015), at Zhangjiajie, pp. 179–188 (2015)Google Scholar
  25. 25.
    Lee, Y.W., Pipino, L., Strong, D., Wang, R.: Process embedded data integrity. J. Database Manag. 15(1), 87–103 (2004)CrossRefGoogle Scholar
  26. 26.
    Iivari, J., Parsons, J., Wand, Y.: Research in information systems analysis and design: introduction to the special issue. J. Assoc. Inf. Syst. 7(8), 509–513 (2006). AtlantaGoogle Scholar
  27. 27.
    Madnick, S.E., Wang, R.Y., Lee, Y.W., Zhu, H.: Overview and framework for data and information quality research. ACM J. Data Inf. Qual. 1(1), 1–22 (2009). Article 2Google Scholar
  28. 28.
    Manners-Bell‏, J.: Global Logistics Strategies: Delivering the Goods. Kogan Page Publishers, New York (2014)Google Scholar
  29. 29.
    Mondragón, M., Mora, M., Garza, L., Álvarez, F., Rodríguez, L., Duran-Limon, H.A.: Toward a well-structured development methodology for business process-oriented software systems based on services. Procedia Technol. 9(2013), 351–360 (2013)CrossRefGoogle Scholar
  30. 30.
    Moody, D.L., Sindre, G., Brasethvik, T.: Evaluating the quality of information models: empirical testing of a conceptual model quality framework. IEEE, pp. 295–305 (2003)Google Scholar
  31. 31.
    Nasir, M.H.N., Sahibuddin, S.: Critical success factors for software projects: a comparative study. Sci. Res. Essays 6(10), 2174–2186 (2011)CrossRefGoogle Scholar
  32. 32.
    Nwakanma, C.I., Asiegbu, B.C., Ogbonna, C.A., Njoku Peter-Paul, C.: Factors affecting successful implementation of information technology projects: experts’ perception. Eur. Sci. J. 9(27), 128–137 (2013). September 2013 editionGoogle Scholar
  33. 33.
    Ofner, M., Otto, B., Österle, H.: Integrating a data quality perspective into business process management. Bus. Process Manag. J. 18(6), 1036–1067 (2012)CrossRefGoogle Scholar
  34. 34.
    Pierce, E.M.: Assessing data quality with control matrices. Commun. ACM 47(2), 82–86 (2004)CrossRefGoogle Scholar
  35. 35.
    Rajkumar, G., Alagarsamy, K.: Failure of software development projects. Int. J. Comput. Sci. Appl. (TIJCSA) 1(11), 74–77 (2013)Google Scholar
  36. 36.
    Redman, T.C.: Data: an unfolding quality disaster. DM Rev. Mag. (2004). Accessed 4 June 2014
  37. 37.
    Sadiq, S.: Handbook of Data Quality: Research and Practice, p. 2013. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  38. 38.
    Sadiq, S.W., Orlowska, M.E., Sadiq, W., Foulger, C.: Data flow and validation in workflow modelling. In: Fifteenth Australasian Database Conference (ADC), Dunedin. CRPIT, vol. 27, pp. 207–214 (2004)Google Scholar
  39. 39.
    Slone, J.P.: Information quality strategy: an empirical investigation of the relationship between information quality improvements and organizational outcomes. Ph.D. dissertation, Capella University (2006)Google Scholar
  40. 40.
    Soffer, P.: Mirror, mirror on the wall, can i count on you at all? Exploring data inaccuracy in business processes. Enterprise, business-process and information systems modeling. In: Proceedings of 11th International Workshop, BPMDS 2010, vol. 50, pp. 14–25 (2010)Google Scholar
  41. 41.
    Soffer, P., Wand, Y.: Goal-driven multi-process analysis. J. Assoc. Inf. Syst. 8(3), 175–203 (2007)Google Scholar
  42. 42.
    Stalk, G., Evans, P., Shulman, L.E.: Competing on capabilities: the new rules of corporate strategy. Harvard Bus. Rev. 70, 57–68 (1992)Google Scholar
  43. 43.
    Standish Group: The CHAOS report – project smart. The Standish Group International Inc. (2014). Accessed 12 June 2016
  44. 44.
    Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Commun. ACM 40(5), 103–110 (1997)CrossRefGoogle Scholar
  45. 45.
    Sun, S.X., Zhao, J.L.: Formal workflow design analytics using data flow modeling. J. Dec. Support Syst. 55(1), 270–283 (2013)CrossRefGoogle Scholar
  46. 46.
    Sun, S.X., Zhao, J.L., Nunamaker, J.F., Liu Sheng, O.R.: Formulating the data-flow perspective for business process management. Inf. Syst. Res. 17(4), 374–391 (2006)CrossRefGoogle Scholar
  47. 47.
    The European Freight Forwarders Association (EFFA). Accessed 24 Nov 2015
  48. 48.
    Trčka, N., Aalst, W.M.P., Sidorova, N.: Data-flow anti-patterns: discovering data-flow errors in workflows. In: Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 425–439. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02144-2_34 CrossRefGoogle Scholar
  49. 49.
    Ullah, A., Lai, R.: Modeling business goal for business-it alignment using requirements engineering. J. Comput. Inf. Syst. 51(3), 21–28 (2011)Google Scholar
  50. 50.
    Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Commun. ACM 39(11), 86–95 (1996). New YorkCrossRefGoogle Scholar
  51. 51.
    Wang, R.Y.: A product perspective on total data quality management. Commun. ACM 41(2), 58–65 (1998)CrossRefGoogle Scholar
  52. 52.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumer. J. Manag. Inf. Syst. 12(4), 5–34 (1996)CrossRefGoogle Scholar
  53. 53.
    Weske, M.: Business Process Management – Concepts, Languages, Architectures, 2nd edn. Springer, Heidelberg (2012)Google Scholar
  54. 54.
    Woodall, P., Borek, A., Parlikad, A.K.: Data quality assessment: the hybrid approach. Inf. Manag. 50(7), 369–382 (2013)CrossRefGoogle Scholar
  55. 55.
    Xingsen, L., Lingling, Z., Peng, Z., Yong, S.: Problems and systematic solutions in data quality. Int. J. Serv. Sci. 2(1), 53–69 (2009)Google Scholar
  56. 56.
    Xu, H., Nord, J.H., Brown, N., Nord, G.G.: Data quality issues in implementing an ERP. Ind. Manag. Data Syst. 102(1), 47–58 (2002)CrossRefGoogle Scholar
  57. 57.
    Zhu, H., Madnick, S.E., Lee, Y.W., Wang, R.Y.: Data and information quality research: its evolution and future. In: Topi, H., Tucker A. (eds.) Computing Handbook: Information Systems and Information Technology, 3rd edn. Chapman & Hall/CRC, pp. 16.1–16.20. MIT-CDO-WP-01 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Information Systems, Faculty of Informatics and Electronic EconomyPoznan University of Economics and BusinessPoznanPoland

Personalised recommendations