Classical Trajectory Models for Laser-Atom and Laser-Molecule Interactions

  • Erik Lötstedt
  • Tsuyoshi Kato
  • Kaoru Yamanouchi
  • Katsumi Midorikawa
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 115)


When an atom or a small molecule in the gas phase is exposed to an intense laser field, a complex response is generally induced. In the present context, “intense” signifies a peak-field intensity in the range between 1014 and 1016 W/cm2, assuming a wavelength of typically 800 nm. Such a laser pulse triggers a violent rearrangement of valence electrons in the atom or molecule.


Laser Field Helium Atom Intense Laser Field Laser Field Intensity Final Kinetic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research on D3 + was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (Grant-in-Aid for Specially Promoted Research on Ultrafast Hydrogen Migration No. 19002006), Grant-in-Aid for Scientific Research No. 21-09238, and the Global COE Program “Chemistry Innovation through Cooperation of Science and Engineering” of the University of Tokyo. The numerical calculations on laser-driven C were carried out at the RIKEN Integrated Cluster of Clusters.


  1. 1.
    M.Y. Kuchiev, JETP Lett. 45, 404 (1987)ADSGoogle Scholar
  2. 2.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    K. Midorikawa, Jpn. J. Appl. Phys. 50, 090001 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    C.L. Kirschbaum, L. Wilets, Phys. Rev. A 21, 834 (1980)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.S. Cohen, Phys. Rev. A 56, 3583 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    J.S. Cohen, J. Phys. B 39, 1517 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    D.A. Wasson, S.E. Koonin, Phys. Rev. A 39, 5676 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    E. Lötstedt, T. Kato, K. Yamanouchi, Phys. Rev. Lett. 106, 203001 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    E. Lötstedt, T. Kato, K. Yamanouchi, Phys. Rev. A 85, 053410 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J. McKenna, A.M. Sayler, B. Gaire, N.G. Johnson, K.D. Carnes, B.D. Esry, I. Ben-Itzhak, Phys. Rev. Lett. 103, 103004 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, W. Sandner, Phys. Rev. Lett. 101, 233001 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    H. Price, C. Lazarou, A. Emmanouilidou, Phys. Rev. A 90, 053419 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    J. McKenna, A.M. Sayler, B. Gaire, N.G. Kling, B.D. Esry, K.D. Carnes, I. Ben-Itzhak, New J. Phys. 14, 103029 (2012)CrossRefGoogle Scholar
  14. 14.
    E. Lötstedt, K. Midorikawa, Phys. Rev. A 90, 043415 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A. Rudenko, T. Ergler, K. Zrost, B. Feuerstein, V.L.B. de Jesus, C.D. Schröter, R. Moshammer, J. Ullrich, J. Phys. B 41, 081006 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    E. Lötstedt, T. Kato, K. Midorikawa, K. Yamanouchi, Classical Trajectory Methods for Simulation of Laser-Atom and Laser-Molecule Interaction, Progress in Ultrafast Intense Laser Science XII, Chapter 2  (Springer International Publishing, Switzerland, 2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Erik Lötstedt
    • 1
  • Tsuyoshi Kato
    • 1
  • Kaoru Yamanouchi
    • 1
  • Katsumi Midorikawa
    • 2
  1. 1.Department of Chemistry, School of ScienceThe University of TokyoBunkyo-kuJapan
  2. 2.RIKEN Center for Advanced PhotonicsWakoJapan

Personalised recommendations