Skip to main content

Biomechanics of the Lymphatic Circulation

  • Chapter
  • First Online:
Lymphedema

Abstract

The biomechanical nature of the lymphatic system plays a central role in all of its functions. Its ability to generate active pumping is key in fluid balance, as demonstrated by disruptions of the various pumping components that result in primary and acquired lymphedema. There are also serious implications for immune function if lymphatic transport is disabled. In this chapter, we present the basic biomechanical concepts necessary to understand lymphatic pumping function and discuss recent research on some of its specific components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Note that these units of pressure denote the heights of a column of fluid. Any surface area at rest at the bottom of a column of fluid would be subjected to a compressive stress directly proportional to the density of the fluid, the height of the column, and the gravitational acceleration constant.

  2. 2.

    There is some evidence that lymph nodes actively contract and thus perhaps aid in propelling lymph [10].

Highlighted References

  1. Bertram CD, Macaskill C, Moore JE Jr. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J Biomech Eng. 2011;133(1):011008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davis MJ, Rahbar E, Gashev AA, Zawieja DC, Moore JE Jr. Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am J Physiol Heart Circ Physiol. 2011;301(1):H48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jamalian S, Bertram CD, Richardson WJ, Moore JE Jr. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series. Am J Physiol Heart Circ Physiol. 2013;305(12):H1709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016;594(20):5749–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Westerhof N, Stergiopulos N, Noble M. Snapshots of hemodynamics. New York: Springer; 2010.

    Book  Google Scholar 

References

  1. Bertram CD, Macaskill C, Davis MJ, Moore JE Jr. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model. Am J Physiol Heart Circ Physiol. 2016;310(7):H847–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Davis MJ, Scallan JP, Wolpers JH, Muthuchamy M, Gashev AA, Zawieja DC. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload. Am J Physiol Heart Circ Physiol. 2012;303(7):H795–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon JB, Greiner ST, Gashev AA, Cote GL, Moore JE, Zawieja DC. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation. 2006;13(7):597–610.

    Article  PubMed  Google Scholar 

  4. Ethier CR, Simmons CA. Introductory biomechanics. New York: Cambridge University Press; 2007.

    Book  Google Scholar 

  5. Hughes GA, Allen JM. Neural modulation of bovine mesenteric lymph node contraction. Exp Physiol. 1993;78(5):663–74.

    Article  CAS  PubMed  Google Scholar 

  6. Jafarnejad M, Cromer WE, Kaunas RR, Zhang SL, Zawieja DC, Moore JE Jr. Measurement of shear stress-mediated intracellular calcium dynamics in human dermal lymphatic endothelial cells. Am J Physiol Heart Circ Physiol. 2015;308(7):H697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kornuta JA, Nepiyushchikh Z, Gasheva OY, Mukherjee A, Zawieja DC, Dixon JB. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. Am J Physiol Regul Integr Comp Physiol. 2015;309(9):R1122–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kunert C, Baish JW, Liao S, Padera TP, Munn LL. Mechanobiological oscillators control lymph flow. Proc Natl Acad Sci U S A. 2015;112(35):10938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rahbar E, Weimer J, Gibbs H, Yeh AT, Bertram CD, Davis MJ, Hill MA, Zawieja DC, Moore JE Jr. Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions. Lymphat Res Biol. 2012;10(4):152–63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Simmons RD, Kumar S, Jo H. The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys. 2016;591:111–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge NIH Grant No. R01 HL094269 and the support of the Royal Society, the Royal Academy of Engineering, and the Sir Leon Bagrit Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Moore Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moore, J.E., Edgar, L.T. (2018). Biomechanics of the Lymphatic Circulation. In: Lee, BB., Rockson, S., Bergan, J. (eds) Lymphedema. Springer, Cham. https://doi.org/10.1007/978-3-319-52423-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52423-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52421-4

  • Online ISBN: 978-3-319-52423-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics