Skip to main content

Structural Evolution of Metals at High Temperature: Complementary Investigations with Neutron and Synchrotron Quantum Beams

  • Conference paper
  • First Online:
Magnesium Technology 2017

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In situ neutron and synchrotron X-ray diffraction deliver unique and complementary insight into the microstructural evolution of metals at high temperature . Neutrons illuminate a larger bulk volume and reveal quantitative phase abundance, bulk texture, lattice parameter changes and other ensemble averaged quantities. In contrast, fine-bundled high-energy X-rays deliver reflections from a number of individual grains. For each constituting phase, their statistics and behavior in time reveal information about grain growth or refinement, subgrain formation, static and dynamic recovery and recrystallization, slip systems, twinning, etc. The complementarity between neutron and synchrotron radiation is demonstrated to study atomic order under ambient and extreme conditions. Examples are given on various metallic systems including magnesium, zirconium alloys and titanium aluminides .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. K.-D. Liss, A. Bartels, A. Schreyer, H. Clemens, High-energy X-rays: a tool for advanced bulk investigations in materials science and physics. Textures Microstruct. 35(3–4), 219–252 (2003)

    Article  Google Scholar 

  2. M. Rittman, K.-D. Liss (eds.), Quantum Beam Science—An Open Access Journal from MDPI (MDPI, Basel, Switzerland, 2016)

    Google Scholar 

  3. K.-D. Liss, K. Chen, Frontiers of synchrotron research in materials science. MRS Bull. 41(6), 435–441 (2016)

    Article  Google Scholar 

  4. B. Chen, J.-F. Lin, J. Chen, H. Zhang, Q. Zeng, Synchrotron-based high-pressure research in materials science. MRS Bull. 41(6), 473–478 (2016)

    Article  Google Scholar 

  5. K.-D. Liss, Thermo-mechanical processing in a synchrotron beam—from simple metals to multiphase alloys and intermetallics. World J. Eng. 7(S2), P438, 1–4 (2010)

    Google Scholar 

  6. K.-D. Liss, K. Yan, Thermo-mechanical processing in a synchrotron beam. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 528(1), 11–27 (2010)

    Google Scholar 

  7. S. Bogle, Pioneering techniques advance understanding of metals under extreme conditions—ANSTO, in Pioneering Techniques Advance Understanding of Metals Under Extreme Conditions, 06 Sept 2015. [Online]. Available: http://www.ansto.gov.au/AboutANSTO/MediaCentre/News/ACS067980. Accessed: 06 Sept 2016

  8. S. Kabra, K. Yan, D.G. Carr, R.P. Harrison, R.J. Dippenaar, M. Reid, K.-D. Liss, Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction. J. Appl. Phys. 113(6) (2013)

    Google Scholar 

  9. K.-D. Liss, T. Schmoelzer, K. Yan, M. Reid, M. Peel, R. Dippenaar, H. Clemens, In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy. J. Appl. Phys. 106(11), 113526 (2009)

    Google Scholar 

  10. K. Yan, K.-D. Liss, U. Garbe, J. Daniels, O. Kirstein, H. Li, R. Dippenaar, From single grains to texture. Adv. Eng. Mater. 11(10), 771–773 (2009)

    Article  Google Scholar 

  11. K.-D. Liss, K. Yan, M. Reid, Physical thermo-mechanical simulation of magnesium: an in-situ diffraction study. Mater. Sci. Eng. A 601, 78–85 (2014)

    Article  Google Scholar 

  12. K. Yan, D.G. Carr, M.D. Callaghan, K.-D. Liss, H. Li, Deformation mechanisms of twinning-induced plasticity steels: in situ synchrotron characterization and modeling. Scr. Mater. 62(5), 246–249 (2010)

    Article  Google Scholar 

  13. E.V. Pereloma, L.C. Zhang, K.D. Liss, U. Garbe, J. Almer, T. Schambron, H. Beladi, I.B. Timokhina, Effect of thermomechanical processing on the microstructure and retained austenite stability during in situ tensile testing using synchrotron X-ray diffraction of NbMoAl TRIP steel. Solid State Phenom. 172–174, 741–746 (2011)

    Article  Google Scholar 

  14. K.-D. Liss, U. Garbe, H. Li, T. Schambron, J.D. Almer, K. Yan, In situ observation of dynamic recrystallization in the bulk of zirconium alloy. Adv. Eng. Mater. 11(8), 637–640 (2009)

    Article  Google Scholar 

  15. D. Qu, K.-D. Liss, K. Yan, M. Reid, J.D. Almer, Y. Wang, X. Liao, J. Shen, On the atomic anisotropy of thermal expansion in bulk metallic glass. Adv. Eng. Mater. 13(9), 861–864 (2011)

    Article  Google Scholar 

  16. K.-D. Liss, D. Qu, K. Yan, M. Reid, Variability of Poisson’s ratio and enhanced ductility in amorphous metal. Adv. Eng. Mater. 15(5), 347–351 (2013)

    Article  Google Scholar 

  17. I.J. Watson, K.-D. Liss, H. Clemens, W. Wallgram, T. Schmoelzer, T.C. Hansen, M. Reid, In situ characterization of a Nb and Mo containing gamma-TiAl based alloy using neutron diffraction and high-temperature microscopy. Adv. Eng. Mater. 11(11), 932–937 (2009)

    Article  Google Scholar 

  18. M. Kawasaki, T.G. Langdon, The significance of strain reversals during processing by high-pressure torsion. Mater. Sci. Eng. A 498(1–2), 341–348 (2008)

    Article  Google Scholar 

  19. K.-D. Liss, K.-I. Funakoshi, R.J. Dippenaar, Y. Higo, A. Shiro, M. Reid, H. Suzuki, T. Shobu, K. Akita, Hydrostatic compression behavior and high-pressure stabilized β-phase in γ-based titanium aluminide intermetallics. Metals 6(7), 165 (2016)

    Article  Google Scholar 

  20. T. Hattori, A. Sano-Furukawa, H. Arima, K. Komatsu, A. Yamada, Y. Inamura, T. Nakatani, Y. Seto, T. Nagai, W. Utsumi, T. Iitaka, H. Kagi, Y. Katayama, T. Inoue, T. Otomo, K. Suzuya, T. Kamiyama, M. Arai, T. Yagi, Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 780, 55–67 (2015)

    Google Scholar 

  21. H. Diao, C. Yan, J.M. Bell, L. Lu, G.P. Zhang, S. Kabra, K.-D. Liss, M.W. Chen, Compressive behaviour of nanocrystalline Mg-5Al alloys. Mater. Technol. 27(1), 85–87 (2012)

    Article  Google Scholar 

  22. A.J. Studer, M.E. Hagen, T.J. Noakes, Wombat: the high-intensity powder diffractometer at the OPAL reactor. Phys. B Condens. Matter. Part 2 385–386, 1013–1015 (2006)

    Google Scholar 

Download references

Acknowledgements

I wish to thank ANSTO for support, including a senior research fellowship, as well as the numerous collaborators, listed under the ANSTO ThermoMec.Pro web pages. The synchrotron radiation facilities ESRF, SPring-8 and APS, as well as their staff are acknowledged for experimental work. APS beam time was granted and travel supported through the Australian Synchrotron Research Program, funded by the Commonwealth of Australia under the National Collaborative Research Infrastructure Strategy, backed by the U.S. Department of Energy under Contract DE-AC02-06CH11357. Travel to ESRF was funded by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron. High-pressure studies were performed at SPring-8 under proposal 2013B1157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Liss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Liss, KD. (2017). Structural Evolution of Metals at High Temperature: Complementary Investigations with Neutron and Synchrotron Quantum Beams. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_87

Download citation

Publish with us

Policies and ethics