Skip to main content

Utilization of a Partially Non-aqueous Electrolyte for the Spatial Mapping of Mg Corrosion Using a Model Mg–Al Electrode

  • Conference paper
  • First Online:
Magnesium Technology 2017

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In-situ techniques to spatially map micro-galvanic corrosion are particularly important for alloys with heterogeneous microstructures. In particular, scanning electrochemical microscopy (SECM) has been utilized to map microstructural features on Mg which may control the corrosion rate . However, rapid corrosion rates of Mg in fully aqueous environments interfere with mapping capabilities. A mixed aqueous and non-aqueous electrolyte, containing methanol and H2O, is proposed which is capable of mapping the active corrosion on Mg with time. However, thorough understanding the effect of methanol additions on the corrosion rate was required. Therefore, the intrinsic corrosion rates of Mg in varying amounts of methanol (0–100 wt%) were investigated using electrochemical impedance spectroscopy (EIS) by exploring the corrosion rate on an Al wire embedded in Mg as a galvanic couple. The nature of the non-aqueous electrolyte on the EIS response is discussed. The evolution of this intrinsic corrosion behavior at the galvanic couple was investigated using a combination of optical microscopy, SECM and mixed potential theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A.D. Südholz, N.T. Kirkland, R.G. Buchheit, N. Birbilis, Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochem. Solid-State Lett. 14, C5–C7 (2011)

    Article  Google Scholar 

  2. E. Ghali, in Magnesium and Magnesium Alloy. Uhlig’s Corrosion Handbook (Wiley, New York, 2000), pp. 793–830

    Google Scholar 

  3. G. Williams, N. Birbilis, H.N. McMurray, The source of hydrogen evolved from a magnesium anode. Electrochem. Commun. 36, 1–5 (2013)

    Article  Google Scholar 

  4. N. Birbilis, A.D. King, S. Thomas, G.S. Frankel, J.R. Scully, Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution. Electrochim. Acta 132, 277–283 (2014)

    Article  Google Scholar 

  5. G.S. Frankel, S. Fajardo, B.M. Lyncha, Introductory lecture on corrosion chemistry: a focus on anodic hydrogen evolution on Al and Mg. Faraday Discuss. 180, 11–33 (2015)

    Article  Google Scholar 

  6. G.S. Frankel, A. Samaniego, N. Birbilis, Evolution of hydrogen at dissolving magnesium surfaces. Corros. Sci. 70, 104–111 (2013)

    Article  Google Scholar 

  7. Z.P. Cano, M. Danaie, J.R. Kish, J.R. McDermid, G.A. Botton, G. Williams, Physical characterization of cathodically-activated corrosion filaments on magnesium alloy AZ31B. Corrosion 71, 146–159 (2015)

    Article  Google Scholar 

  8. L.G. Bland, N. Birbilis, J.R. Scully, Exploring the effects of intermetallic particle size and spacing on the corrosion of Mg-Al alloys using model electrodes. J. Electrochem. Soc. (2016) (In Review)

    Google Scholar 

  9. L.G. Bland, J.J. Bhattacharyya, S.R. Agnew, J.M. Fitz-Gerald, J.R. Scully, Effect of Al-Mn and Al-Mn-Fe intermetallic particle size and distribution on the corrosion of Mg-3Al-1Zn alloy: AZ31. Acta Mater. (2016) (In Review)

    Google Scholar 

  10. S. Thomas, J. Izquierdo, N. Birbilis, R.M. Souto, Possibilities and limitations of scanning electrochemical microscopy of Mg and Mg alloys. Corrosion 71, 171–183 (2015)

    Article  Google Scholar 

  11. U.M. Tefashe, P. Dauphin-Ducharme, M. Danaie, Z.P. Cano, J.R. Kish, G.A. Botton, J. Mauzeroll, Localized corrosion behavior of AZ31B magnesium alloy with an electrodeposited Poly(3,4-Ethylenedioxythiophene) coating. J. Electrochem. Soc. 162 (2015)

    Google Scholar 

  12. U.M. Tefashe, M.E. Snowden, P.D. Ducharme, M. Danaie, G.A. Botton, J. Mauzeroll, Local flux of hydrogen from magnesium alloy corrosion investigated by scanning electrochemical microscopy. J. Electroanal. Chem. 720–721, 121–127 (2014)

    Article  Google Scholar 

  13. R.M. Asmussen, W.J. Binns, P. Jakupi, P. Dauphin-Ducharme, U.M. Tefashe, J. Mauzeroll, D. Shoesmith, Reducing the corrosion rate of magnesium alloys using ethylene glycol for advanced electrochemical imaging. Corros. Sci. 93, 70–79 (2015)

    Article  Google Scholar 

  14. P. Dauphin-Ducharme, R.M. Asmussen, U.M. Tefashe, M. Danaie, W.J. Binns, P. Jakupi, G.A. Botton, D.W. Shoesmith, J. Mauzeroll, Local hydrogen fluxes correlated to microstructural features of a corroding sand cast AM50 magnesium alloy. J. Electrochem. Soc. 161 (2014)

    Google Scholar 

  15. ASTM-G1, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (ASTM International G1, 2011)

    Google Scholar 

  16. R. Baboian, Electrochemical techniques for predicting galvanic corrosion. ASTM STP 576, 5–19 (1976)

    Google Scholar 

  17. ASTM-81, Standard Guide for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes (ASTM International G71, 2014)

    Google Scholar 

  18. L.G. Bland, J.M. Fitz-Gerald, J.R. Scully, Metallurgical and electrochemical characterization of the corrosion of AZ31B-H24 tungsten inert gas weld: isolated weld zones. Corr. J. 72, 1116–1132 (2016)

    Article  Google Scholar 

  19. L.G. Bland, A.D. King, N. Birbilis, J.R. Scully, Assessing the corrosion of commercially pure magnesium and commercial AZ31B by electrochemical impedance, mass-loss, hydrogen collection and ICP-OES solution analysis. Corr. J. 71, 128–145 (2015)

    Article  Google Scholar 

  20. L.G. Bland, B.C.R. Troconis, R.J.S. Jr., J.M. Fitz-Gerald, J.R. Scully, Metallurgical and electrochemical characterization of the corrosion of Mg-Al-Zn alloy AZ31B-H24 tungsten inert gas weld: galvanic corrosion between weld zones. Corr. J. doi:10.5006/2078 (in press, 2016)

  21. A.D. King, N. Birbilis, J.R. Scully, Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim. Acta 121, 394–406 (2014)

    Article  Google Scholar 

  22. J.R. Scully, Corr. J. 56, 199–218 (2000)

    Article  Google Scholar 

  23. M. Stern, A.I. Geary. J Electrochem Soc 104, 56–63

    Google Scholar 

  24. Z. Shi, F. Cao, G.L. Song, M. Liu, A. Atrens, Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–RE alloys: RE=Ce, La, Nd, Y, Gd. Corros. Sci. 76, 98–118 (2013)

    Article  Google Scholar 

  25. F. Cao, Z. Shi, J. Hofstetter, P.J. Uggowitzer, G. Song, M. Liu, A. Atrens, Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2. Corros. Sci. 75, 78–99 (2013)

    Article  Google Scholar 

  26. D.A. Jones, Principles and Prevention of Corrosion (Prentice Hall, Upper Saddle River, NJ, 1996)

    Google Scholar 

  27. R.M. Souto, A. Kiss, J. Izquierdo, L. Nagy, I. Bitter, G. Nagy, Spatially-resolved imaging of concentration distributions on corroding magnesium-based materials exposed to aqueous environments by SECM. Electrochem. Commun. 26, 25–28 (2013)

    Article  Google Scholar 

  28. G. Song, A. Atrens, D. St John, X. Wu, J. Nairn, The anodic dissolution of magnesium in chloride and sulphate solutions. Corros. Sci. 39, 1981–2004 (1997)

    Google Scholar 

  29. G. Baril, C. Blanc, M. Keddam, N. Pebere, Local electrochemical impedance spectroscopy applied to the corrosion behavior of an AZ91 magnesium alloy. J. Electrochem. Soc. 150, B488–B493 (2003)

    Article  Google Scholar 

  30. G. Baril, C. Blanc, N. Pebere, AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys—characterization with respect to their microstructures. J. Electrochem. Soc. 148, B489–B496 (2001)

    Article  Google Scholar 

  31. G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, V. Vivier, An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. J. Electrochem. Soc. 154, C108–C113 (2007)

    Article  Google Scholar 

  32. G. Baril, N. Pebere, The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corros. Sci. 43, 471–484 (2001)

    Article  Google Scholar 

  33. I. Nakatsugawa, R. Martin, E.J. Knystautas, Improving corrosion resistance of AZ91D magnesium alloy by nitrogen ion implantation. Corrosion 52, 921–926 (1996)

    Article  Google Scholar 

  34. Y.C. Xin, C.L. Liu, W.J. Zhang, J. Jiang, T.Y. Guoyi, X.B. Tian, P.K. Chua, Electrochemical behavior Al2O3/Al coated surgical AZ91 magnesium alloy in simulated body fluids. J. Electrochem. Soc. 155, C178–C182 (2008)

    Article  Google Scholar 

  35. A.M. Fekry, M.A. Ameer, Electrochemistry and impedance studies on titanium and magnesium alloys in Ringer’s solution. Int. J. Electrochem. Sci. 6, 1342–1354 (2011)

    Google Scholar 

  36. S. Feliu, C. Maffiotte, A. Samaniego, J.C. Galvan, V. Barranco, Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys. Appl. Surf. Sci. 257, 8558–8568 (2011)

    Article  Google Scholar 

  37. S. Lebouil, A. Duboin, F. Monti, P. Tabeling, P. Volovitch, K. Ogle, A novel approach to on-line measurement of gas evolution kinetics: application to the negative difference effect of Mg in chloride solution. Electrochim. Acta (2013)

    Google Scholar 

  38. T.R. Thomaz, C.R. Weber, T. Pelegrini Jr., L.F.P. Dick, G. Knörnschild, The negative difference effect of magnesium and of the AZ91 alloy in chloride and stannate-containing solutions. Corros. Sci. 52, 2235–2243 (2010)

    Article  Google Scholar 

  39. M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith, G.A. Botton, The cathodic behaviour of Al–Mn precipitates during atmospheric and saline aqueous corrosion of a sand-cast AM50 alloy. Corros. Sci. 83, 299–309 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Bland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Bland, L.G., Schaller, R.F., Scully, J.R. (2017). Utilization of a Partially Non-aqueous Electrolyte for the Spatial Mapping of Mg Corrosion Using a Model Mg–Al Electrode. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_59

Download citation

Publish with us

Policies and ethics