Advertisement

Scaled-Up Fabrication of Thin-Walled ZK60 Tubing Using Shear Assisted Processing and Extrusion (ShAPE)

  • Scott WhalenEmail author
  • Vineet Joshi
  • Nicole Overman
  • Dustin Caldwell
  • Curt Lavender
  • Tim Skszek
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Shear Assisted Processing and Extrusion (ShAPE) has been scaled-up and applied to direct extrusion of thin-walled magnesium tubing. Using ShAPE, billets of ZK60A-T5 were directly extruded into round tubes having an outer diameter of 50.8 mm and wall thickness of 1.52 mm (extrusion ratio of 17.7). Due to material flow effects resulting from the simultaneous linear and rotational shear intrinsic to ShAPE, the ram force and k-factor during extrusion were just 40 kN (9000 lbf) and 3.33 MPa (0.483 ksi) respectively. This represents a >10 times reduction in k-factor, and therefore ram force, compared to conventional extrusion. The severe shearing conditions inherent to ShAPE resulted in microstructural refinement with an average grain size of 3.8 μm measured at the midpoint of the tube wall. Tensile testing per ATSM E-8 on specimens oriented parallel to the extrusion direction gave an ultimate tensile strength of 254.4 MPa and elongation of 20.1%. Specimens tested perpendicular to the extrusion direction had an ultimate tensile strength of 297.2 MPa and elongation of 25.0%.

Keywords

Shear processing Direct extrusion Grain refinement ShAPE ZK60 Magnesium tubing 

Notes

Acknowledgements

The authors thank the U.S. Department of Energy Vehicles Technologies Office (DOE/VTO) for financial support of this work. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the United States Department of Energy under contract DE-AC06-76LO1830.

References

  1. 1.
    E. Aghion, B. Bronfin, D. Eliezer, The role of the magnesium industry in protecting the environment. J. Mater. Process. Technol. 117, 381–385 (2001)CrossRefGoogle Scholar
  2. 2.
    H. Furuya, N. Kogiso, S. Matunaga, K. Senda, Applications of magnesium alloys for aerospace structure systems. Mater. Sci. Forum 350, 341–348 (2000)CrossRefGoogle Scholar
  3. 3.
    L. Wang, G. Fang, L. Qian, S. Leeflang, J. Duszczyk, J. Zhou, Forming of magnesium alloy microtubes in the fabrication of biodegradable stents. Progress Nat. Sci. Mater. Int. 24, 500–506 (2014)CrossRefGoogle Scholar
  4. 4.
    F. Froes, D. Eliezer, E. Aghion, The science, technology, and applications of magnesium. J. Mater. Metals Mater. Soc. 50(9), 30–34 (1998)CrossRefGoogle Scholar
  5. 5.
    W. Joost, Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. J. Mater. Metals Mater. Soc. 64(9), 1032–1038 (2012)Google Scholar
  6. 6.
    B. Mordike, T. Ebert, Magnesium-properties-applications-potential. Mater. Sci. Eng. A 302, 37–45 (2001)CrossRefGoogle Scholar
  7. 7.
    K. Kubota, M. Mabuchi, K. Higashi, Review—processing and mechanical properties of fine-grained magnesium alloys. J. Mater. Sci. 34, 2255–2262 (1999)CrossRefGoogle Scholar
  8. 8.
    R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zehetbauer, Y. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation. J. Mater. Metals Mater. Soc. 58(4), 33–39 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Lee, B. Ahn, M. Kawasaki, T. Langdon, Evolution in hardness and microstructure of ZK60A magnesium alloy processed by high-pressure torsion. J. Mater. Res. Technol. 4(1), 18–25 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Alireza Torbati-Sarraf, T. Langdon, Properties of a ZK60 magnesium alloy processed by high-pressure torsion. J. Alloys Compd. 613, 357–363 (2014)Google Scholar
  11. 11.
    J. Cabrera, O. Cobos, ZK60 alloy processed by ECAP: microstructural, physical and mechanical characterization. Mater. Sci. Eng. A 594, 32–39 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Yuan, A. Ma, X. Gou, J. Jiang, F. Lu, D. Song, Superior mechanical properties of ZK60 Mg alloy processed by equal channel angular pressing and rolling. Mater. Sci. Eng. A 630, 45–50 (2015)CrossRefGoogle Scholar
  13. 13.
    E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. J. Mech. Behav. Biomed. Mater. 37, 307–322 (2014)CrossRefGoogle Scholar
  14. 14.
    D. Li, V. Joshi, C. Lavender, M. Khaleel, S. Ahzi, Yield asymmetry design of magnesium alloys by integrated computational materials engineering. Comput. Mater. Sci. 79, 448–455 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Xu, M. Zheng, H. Chang, X. Hu, K. Wu, W. Gan, H. Brokmeier, Microstructure and properties of pure Mg/ZK60 laminate processed by accumulative roll bonding. Mater. Sci. Forum 650, 343–346 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Lin, Q. Wang, L. Peng, H. Roven, Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. J. Alloy. Compd. 476, 441–445 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Milner, F. Abu-Farha, Microstructural evolution and it’s relationship to the mechanical properties of Mg AZ31B friction stir back extruded tubes. Magnes. Technol., 263–268 (2014)Google Scholar
  18. 18.
    F. Abu-Farha, A preliminary study on the feasibility of friction stir back extrusion. Scripta Mater. 66, 615–618 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Khorrami, M. Movahedi, Microstructure evolutions and mechanical properties of tubular aluminum produced by friction stir back extrusion. Mater. Des. 65, 74–79 (2015)CrossRefGoogle Scholar
  20. 20.
    I. Dinaharan, R. Sathiskumar, S. Vijay, N. Murugan, Microstructural characterization of pure copper tubes produced by a novel method—friction stir back extrusion. Procedia Mater. Sci. 5, 1502–1508 (2015)CrossRefGoogle Scholar
  21. 21.
    G. Buffa, D. Campanella, L. Fratini, F. Micari, AZ31 magnesium alloy recycling through friction stir extrusion process. Int. J. Mater. Form., 1–6 (2015)Google Scholar
  22. 22.
    R. Behnagh, R. Mahdavinejad, A. Yivari, M. Abdollah, M. Narvan, Production of wire from AA7277 aluminum chips via friction-stir extrusion (FSE). Metall. Mater. Trans. B 45(4), 1484–1489 (2014)CrossRefGoogle Scholar
  23. 23.
    V. Manchiraju, Direct solid-state conversion of recyclable metals and alloys (Final Technical Report DE-EE0003458, Oak Ridge National Laboratory, 2012)Google Scholar
  24. 24.
    V. Joshi, S. Jana, D. Li, H. Garmestani, E. Nyberg, C. Lavender, High shear deformation to produce high strength and energy absorption in Mg alloys. Magnes. Technol., 83–88 (2014)Google Scholar
  25. 25.
    C. Lavender, V. Joshi, D. Paxton, S. Jana, G. Grant, D. Herling, R. Davies, System and process for formation of extrusion structures, US Patent Application, 2014/0283574 A1Google Scholar
  26. 26.
    S. Whalen, S. Jana, D. Catalini, N. Overman, J. Sharp, Friction consolidation processing of n-type bismuth telluride thermoelectric material. J. Electron. Mater. 45(7), 3390–3399 (2016)CrossRefGoogle Scholar
  27. 27.
    H. McQueen, Development of dynamic recrystallization theory. Mater. Sci. Eng. A 387, 203–208 (2004)CrossRefGoogle Scholar
  28. 28.
    H. McQueen, C. Imbert, Dynamic recrystallization: plasticity enhancing structural development. J. Alloy. Compd. 378(1), 35–43 (2004)CrossRefGoogle Scholar
  29. 29.
    H. Hu, D. Zhang, F. Pan, M. Yang, Analysis of the cracks formation on surface of extruded magnesium rod based on numerical modeling and experimental verificationGoogle Scholar
  30. 30.
    J. Young, The production of fine grained magnesium alloys through thermomechanical processing for the optimization of microstructural and mechanical properties, Ph.D. Thesis, Washington State University, 2015Google Scholar
  31. 31.
    X. Li, W. Tang, A. Reynolds, Material flow and texture in friction extruded wire, in Friction Stir Welding and Processing VII (Wiley, New York, 2013), pp. 339–347Google Scholar
  32. 32.
    S. Agnew, J. Horton, T. Lillo, D. Brown, Enhanced ductility in strongly textured magnesium produced by equal channel angular pressing. Scripta Mater. 50, 377–381 (2004)CrossRefGoogle Scholar
  33. 33.
    L. Meyer, M. Hockauf, B. Zillmann, I. Schneider, Strength, ductility and impact toughness of the magnesium alloy AZ31B after equal-channel angular pressing. Int. J. Mater. Form. 2(1), 61–64 (2009)CrossRefGoogle Scholar
  34. 34.
    K. Kim, W. Kim, Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Mater. Sci. Eng. A 385, 300–308 (2004)CrossRefGoogle Scholar
  35. 35.
    W. Kim, S. Hong, Y. Kim, S. Min, H. Jeong, J. Lee, Texture development and its effects on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 51, 3293–3307 (2003)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Scott Whalen
    • 1
    Email author
  • Vineet Joshi
    • 1
  • Nicole Overman
    • 1
  • Dustin Caldwell
    • 1
  • Curt Lavender
    • 1
  • Tim Skszek
    • 2
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Magna-CosmaBattle CreekUSA

Personalised recommendations