The Effect of \( \{ 10\bar{1}2\} \) Twin Boundary on the Evolution of Defect Substructure

  • F. Wang
  • C. D. Barrett
  • K. Hazeli
  • K. D. Molodov
  • T. Al-Samman
  • A. Oppedal
  • D. A. Molodov
  • A. Kontsos
  • K. T. Ramesh
  • H. El Kadiri
  • S. R. Agnew
Chapter
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Pure Mg single crystals were deformed at room temperature along two orientations in sequence, in order to activate a specific dislocation slip mode followed by \( \left\{ {10\bar{1}2} \right\} \) twinning. The defects in both the matrix and twin crystals were analyzed with a transmission electron microscope (TEM). This study reveals the collective evolution of the defect substructure when a dislocated crystal is “invaded” by a moving twin boundary. When primarily \( \left[ c \right] \)-containing defects in the matrix were incorporated by a moving twin boundary, including \( \langle c + a\rangle \), pure \( \left[ c \right] \) dislocations and \( I_{1} \) stacking faults, the twin contains homogeneously distributed \( I_{1} \) stacking faults, which in some instances appear to be connected on twin boundary to the faults in the matrix.

Keywords

Magnesium Hexagonal Single crystal Twin boundary TEM 

Notes

Acknowledgements

This work is supported by the National Science Foundation (NSF) grant number CMMI 1235259 (Mary Toney). A.K. acknowledges the NSF for the financial support provided through the CMMI 1434506 award to Drexel University. T.A.S., K.D.M. and D.A.M. express their gratitude to the Deutsche Forschungsgemeinschaft (DFG) for financial support (Grants AL 1343/5-1 and MO 848/18-1). The work was also supported in part by the Materials in Extreme Dynamic Environments program at the Johns Hopkins University.

References

  1. 1.
    H. El Kadiri et al., Why are 10–12 twins profuse in magnesium. Acta Mater. 85, 354–361 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A 12A, 409–418 (1981)CrossRefGoogle Scholar
  3. 3.
    P. Price, Nucleation and growth of twins in dislocation-free zinc crystals. Proc. R. Soc. Lond. 260, 251–262 (1961)CrossRefGoogle Scholar
  4. 4.
    M.H. Yoo, C.T. Wei, Phil. Mag. 14, 573–587 (1966)CrossRefGoogle Scholar
  5. 5.
    D. Tomsett, M. Bevis, The incorporation of basal slip dislocations in 10–12 twins in zinc crystals. Phil. Mag. 19, 129–140 (1969)CrossRefGoogle Scholar
  6. 6.
    S. Lay, G. Nouet, Interaction of slip dislocations with the (01-12) twin interface in zinc. Philos. Mag. A 70, 1027–1044 (1994)CrossRefGoogle Scholar
  7. 7.
    F. Wang, S. Agnew, Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int. J. Plas. 81, 63–86 (2015)CrossRefGoogle Scholar
  8. 8.
    B. Morrow et al., In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Met. Mater. Trans. A 45, 36–40 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Molodov, T. Al-Samman, D. Molodov, On the diversity of the plastic response of magnesium in plane strain compression. Mater. Sci. Eng., A 651, 63–68 (2016)CrossRefGoogle Scholar
  10. 10.
    C. Mo et al., Acoustic emission of deformation twinning in magnesium. Materials 9, 662 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Sandloebes et al., The relation between ductility and stacking fault energies in Mg and Mg-Y alloys. Acta Mater. 60, 3011–3021 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Sandloebes et al., Basal and non-basal dislocation slip in Mg-Y. Mater. Sci. Eng. A 576, 61–68 (2013)CrossRefGoogle Scholar
  13. 13.
    S.R. Agnew, L. Capolungo, C.A. Calhoun, Connections between the basal I1 “growth” fault and <c+a> dislocations. Acta Mater. 82, 255–265 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Wu, W. Curtin, The origin of high hardening and low ductility in magnesium. Nature 526, 62–67 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Geng et al., An electron microscopy study of dislocation structures in Mg single crystals compressed along [0001] at room temperature. Phil. Mag. 95, 3910–3932 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Geng et al., The structure of <c+a> type dislocation loops in magnesium. Phil. Mag. Lett. 94, 377–386 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Stohr, J. Poirier, Etude en Microscopie Electronique du Glissement Pyramidal{11-22} <11-23> dans le Magnesium. Phil. Mag. 25, 1313–1329 (1972)CrossRefGoogle Scholar
  18. 18.
    Z. Shen, R. Wagoner, W. Clark, Dislocation and grain boundary interactions in metals. Acta Metall. 36, 3231–3242 (1988)CrossRefGoogle Scholar
  19. 19.
    W. Clark et al., On the criteria for slip transmission across interfaces in polycrystals. Scripta Metall. 26, 203–206 (1992)CrossRefGoogle Scholar
  20. 20.
    A. Berghezan, A. Fourdeux, S. Amelinckx, Transmission electron microscopy studies of dislocations and stacking faults in a hexagonal metal: zinc. Acta Metal. 9, 464–490 (1961)CrossRefGoogle Scholar
  21. 21.
    D. Hull, D. Bacon, Introduction to Dislocations (Elsevier Science, 2011)Google Scholar
  22. 22.
    A. Serra, D. Bacon, Interaction of a moving 10–12 twin boundary with perfect dislocations and loops in an HCP metal. Phil. Mag. 90, 845–861 (2010)CrossRefGoogle Scholar
  23. 23.
    X. Shao et al., Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy. Sci. Rep. 6, 30096 (2016)CrossRefGoogle Scholar
  24. 24.
    N. Gharbi et al., Impact of an applied stress on c-component loops under Zr ion irradiation in recrystallized Zircaloy-4 and M5. J. Nucl. Mater. 467, 785–801 (2015)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • F. Wang
    • 1
  • C. D. Barrett
    • 2
  • K. Hazeli
    • 3
  • K. D. Molodov
    • 4
  • T. Al-Samman
    • 4
  • A. Oppedal
    • 5
  • D. A. Molodov
    • 4
  • A. Kontsos
    • 6
  • K. T. Ramesh
    • 3
  • H. El Kadiri
    • 5
  • S. R. Agnew
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleUSA
  3. 3.Hopkins Extreme Materials InstituteThe Johns Hopkins UniversityBaltimoreUSA
  4. 4.Institute of Physical Metallurgy and Metal PhysicsRWTH Aachen UniversityAachenGermany
  5. 5.Department of Mechanical EngineeringMississippi State UniversityStarkvilleUSA
  6. 6.Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations