An Adaptive Coarse Space for P.L. Lions Algorithm and Optimized Schwarz Methods

  • Ryadh Haferssas
  • Pierre Jolivet
  • Frédéric Nataf
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 116)

Abstract

Optimized Schwarz methods (OSM) are very popular methods which were introduced in Lions (On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. In: Chan TF, Glowinski R, Périaux J, Widlund O (eds) Third international symposium on domain decomposition methods for partial differential equations, Houston, TX, March 20–22, 1989. SIAM, Philadelphia, PA, 1990) for elliptic problems and in Després (C R Acad Sci Paris 1(6):313–316, 1990) for propagative wave phenomena. We build here a coarse space for which the convergence rate of the two-level method is guaranteed regardless of the regularity of the coefficients. We do this by introducing a symmetrized variant of the ORAS (Optimized Restricted Additive Schwarz) algorithm (St-Cyr et al., SIAM J Sci Comput 29(6):2402–2425 (electronic), 2007) and by identifying the problematic modes using two different generalized eigenvalue problems instead of only one as in Spillane et al. (C R Math Acad Sci Paris 351(5–6):197–201, 2013) and Spillane et al. (Numer Math 126(4):741–770, 2014) for the ASM (Additive Schwarz method), BDD [balancing domain decomposition (Mandel, Comm Appl Numer Methods 9:233–241, 1992)] or FETI [finite element tearing and interconnection (Farhat and Roux, Int J Numer Meth Eng 32:1205–1227, 1991)] methods.

References

  1. P.R. Amestoy, I.S. Duff, J.Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal. Appl. 23 (1):15–41 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. L. Conen, V. Dolean, R. Krause, F. Nataf, A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator. J. Comput. Appl. Math. 271, 83–99 (2014). ISSN: 0377-0427Google Scholar
  3. B. Després, Domain decomposition method and the Helmholtz problem.II, in Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE, 1993 (SIAM, Philadelphia, PA, 1993), pp. 197–206Google Scholar
  4. V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementation (SIAM, Philadelphia, PA, 2015)CrossRefMATHGoogle Scholar
  5. C. Farhat, A. Macedo, M. Lesoinne, A two-level domain decomposition method for the iterative solution of high-frequency exterior Helmholtz problems. Numer. Math. 85 (2), 283–303 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. M.J. Gander, F. Magoulès, F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (1), 38–60 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. R. Haferssas, P. Jolivet, F. Nataf, An additive Schwarz method type theory for Lions’ algorithm and Optimized Schwarz Methods. Working paper or preprint, December 2015. https://hal.archives-ouvertes.fr/hal-01278347 MATHGoogle Scholar
  9. F. Hecht, New development in freefem++. J. Numer. Math. 20 (3–4), 251–265 (2012). ISSN:1570-2820Google Scholar
  10. C. Japhet, F. Nataf, F.-X. Roux, The Optimized Order 2 Method with a coarse grid preconditioner. Application to convection-diffusion problems, in Ninth International Conference on Domain Decomposition Methods in Science and Engineering, ed. by P. Bjorstad, M. Espedal, D. Keyes (Wiley, New York, 1998), pp. 382–389Google Scholar
  11. P. Jolivet, F. Nataf, Hpddm: High-Performance Unified framework for Domain Decomposition methods, MPI-C++ library. https://github.com/hpddm/hpddm, 2014
  12. P. Jolivet, F. Hecht, F. Nataf, C. Prud’homme, Scalable domain decomposition preconditioners for heterogeneous elliptic problems, in Proceedings of the 2013 ACM/IEEE conference on Supercomputing, SC13. (ACM, New York, 2013), pp. 80:1–80:11. Best paper finalist Google Scholar
  13. R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol. 6 (SIAM, Philadelphia, PA, 1998)CrossRefMATHGoogle Scholar
  14. P.-L. Lions, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. In Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, editors, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, TX, March 20–22, 1989 (SIAM, Philadelphia, PA, 1990)Google Scholar
  15. J. Mandel, Balancing domain decomposition. Comm. Appl. Numer. Methods 9, 233–241 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. S.V. Nepomnyaschikh, Mesh theorems of traces, normalizations of function traces and their inversions. Sov. J. Numer. Anal. Math. Model. 6, 1–25 (1991)MathSciNetCrossRefMATHGoogle Scholar
  17. J. Nocedal, S.J. Wright, Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. (Springer, New York, 2006). ISBN: 978-0387-30303-1; 0-387-30303-0Google Scholar
  18. H.A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15, 272–286 (1870)Google Scholar
  19. N. Spillane, V. Dolean, P. Hauret, F. Nataf, D. Rixen, Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method. C. R. Math. Acad. Sci. Paris 351 (5–6), 197–201 (2013) ISSN: 1631-073X. doi: 10.1016/j.crma.2013.03.010. http://dx.doi.org/10.1016/j.crma.2013.03.010
  20. N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126 (4), 741–770 (2014). ISSN: 0029-599X. doi: 10.1007/s00211-013-0576-y. http://dx.doi.org/10.1007/s00211-013-0576-y
  21. A. St-Cyr, M.J. Gander, S.J. Thomas, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning. SIAM J. Sci. Comput. 29 (6), 2402–2425 (electronic) (2007). ISSN: 1064-8275. doi: 10.1137/060652610. http://dx.doi.org/10.1137/060652610
  22. P.L. Tallec, J. Mandel, M. Vidrascu, A Neumann-Neumann domain decomposition algorithm for solving plate and shell problems. SIAM J. Numer. Anal. 35, 836–867 (1998)MathSciNetCrossRefMATHGoogle Scholar
  23. A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and Theory, vol. 34. Springer Series in Computational Mathematics (Springer, Berlin, 2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ryadh Haferssas
    • 1
  • Pierre Jolivet
    • 2
  • Frédéric Nataf
    • 1
  1. 1.Laboratoire Jacques-Louis LionsParisFrance
  2. 2.Toulouse Institute of Computer Science ResearchToulouseFrance

Personalised recommendations