Skip to main content

SHEM: An Optimal Coarse Space for RAS and Its Multiscale Approximation

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 116)

Abstract

In domain decomposition methods, coarse spaces are traditionally added to make the method scalable. Coarse spaces can however do much more: they can act on other error components that the subdomain iteration has difficulties with, and thus accelerate the overall solution process. We identify here the optimal coarse space for RAS, where optimal does not refer to scalable, but to best possible. This coarse space leads to convergence of the subdomain iterative method in two steps. Since this coarse space is very rich, we propose an approximation which turns out to be also very effective for multiscale problems.

Keywords

  • Iteration Count
  • Domain Decomposition Method
  • Schwarz Method
  • Coarse Space
  • Restriction Matrice

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • J. Aarnes, T.Y. Hou, Multiscale domain decomposition methods for elliptic problems with high aspect ratios. Acta Math. Appl. Sin. Engl. Ser. 18 (1), 63–76 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • X.-C. Cai, M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21 (2), 792–797 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12 (4), 391–414 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Y. Efendiev, J. Galvis, R. Lazarov, J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46 (5), 1175–1199 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • E. Efstathiou, M.J. Gander, Why restricted additive Schwarz converges faster than additive Schwarz. BIT 43, 945–959 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8 (4), 1461–1483 (2010a)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul. 8 (5), 1621–1644 (2010b)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, Schwarz methods over the course of time. Electron. Trans. Numer. Anal. 31, 228–255 (2008)

    MathSciNet  MATH  Google Scholar 

  • M.J. Gander, L. Halpern, Méthodes de décomposition de domaine. Encyclopédie électronique pour les ingénieurs, (2012)

    Google Scholar 

  • M.J. Gander, L. Halpern, K. Santugini, Discontinuous coarse spaces for DD-methods with discontinuous iterates, in Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering (Springer, Cham, 2014a), pp. 607–616

    Google Scholar 

  • M.J. Gander, L. Halpern, K. Santugini, A new coarse grid correction for RAS/AS, in Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering (Springer, Cham, 2014b), pp. 275–284

    Google Scholar 

  • M.J. Gander, F. Kwok, Optimal interface conditions for an arbitrary decomposition into subdomains, in Domain Decomposition Methods in Science and Engineering XIX (Springer, Berlin, 2011), pp. 101–108

    CrossRef  MATH  Google Scholar 

  • M.J. Gander, A. Loneland, T. Rahman, Analysis of a new harmonically enriched multiscale coarse space for domain decomposition methods. arXiv preprint arXiv:1512.05285 (2015)

    Google Scholar 

  • I.G. Graham, P.O. Lechner, R. Scheichl, Domain decomposition for multiscale PDEs. Numer. Math. 106 (4), 589–626 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • A. Klawonn, P. Radtke, O. Rheinbach, FETI-DP methods with an adaptive coarse space. SIAM J. Numer. Anal. 53 (1), 297–320 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • P.-L. Lions, On the Schwarz alternating method. I, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Paris, France, 1988, pp. 1–42

    Google Scholar 

  • J. Mandel, B. Sousedík, Adaptive coarse space selection in the BDDC and the FETI-DP iterative substructuring methods: optimal face degrees of freedom, in Domain Decomposition Methods in Science and Engineering XVI (Springer, Berlin, 2007), pp. 421–428

    MATH  Google Scholar 

  • R. Scheichl, Robust coarsening in multiscale PDEs, in Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol. 91 (Springer, Berlin, 2013), pp. 51–62

    Google Scholar 

  • N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126 (4), 741–770 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • A. Toselli, O. Widlund, Domain Decomposition Methods—Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34 (Springer, Berlin, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atle Loneland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gander, M.J., Loneland, A. (2017). SHEM: An Optimal Coarse Space for RAS and Its Multiscale Approximation. In: Lee, CO., et al. Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computational Science and Engineering, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-52389-7_32

Download citation