Skip to main content

Adaptive BDDC Deluxe Methods for H(curl)

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 116)

Abstract

The work presents numerical results using adaptive BDDC deluxe methods for preconditioning the linear systems arising from finite element discretizations of the time-domain, quasi-static approximation of the Maxwell’s equations. The provided results, obtained using the BDDC implementation of the PETSc library, show that these methods are poly-logarithmic in the polynomial degree of the Nédélec elements of first and second kind, and robust with respect to arbitrary distributions of the magnetic permeability and the conductivity of the medium.

Keywords

  • Primal Space
  • Mesh Vertex
  • High Order Element
  • Stable Decomposition
  • Tangential Trace

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-52389-7_29
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-52389-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (1), 15–41 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • S. Balay et al., PETSc users manual. Technical Report ANL-95/11 - Revision 3.6, Argonne National Lab, 2015

    Google Scholar 

  • D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44 (Springer, Heidelberg, 2013)

    Google Scholar 

  • J.G. Calvo, O.B. Widlund, An adaptive choice of primal constraints for BDDC domain decomposition algorithms. Technical Report TR2015-979, Courant Institute of Mathematical Sciences, 2016

    Google Scholar 

  • C.R. Dohrmann, O.B. Widlund, An iterative substructuring algorithm for two-dimensional problems in H(curl). SIAM J. Numer. Anal. 50 (3), 1004–1028 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • C.R. Dohrmann, O.B. Widlund, Some recent tools and a BDDC algorithm for 3D problems in H(curl), in Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol. 91 (Springer, Heidelberg, 2013), pp. 15–25

    Google Scholar 

  • C.R. Dohrmann, O.B. Widlund, A BDDC algorithm with deluxe scaling for three-dimensional H(curl) problems. Commun. Pure Appl. Math. 69 (4), 745–770 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • A.V. Grayver, T.V. Kolev, Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method. Geophysics 80 (6), E277–E291 (2015)

    CrossRef  Google Scholar 

  • R. Hiptmair, J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (6), 2483–2509 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • J.J. Hu, R.S. Tuminaro, P.B. Bochev, C.J. Garasi, A.C. Robinson, Toward an h-independent algebraic multigrid method for Maxwell’s equations. SIAM J. Sci. Comput. 27 (5), 1669–1688 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Q. Hu, S. Shu, J. Zou, A substructuring preconditioner for three-dimensional Maxwell’s equations, in Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol. 91 (Springer, Heidelberg, 2013), pp. 73–84

    Google Scholar 

  • G. Karypis, METIS and ParMETIS, in Encyclopedia of Parallel Computing, ed. by D. Padua (Springer, New York, 2011), pp. 1117–1124

    Google Scholar 

  • H.H. Kim, E.T. Chung, J. Wang, BDDC and FETI-DP algorithms with adaptive coarse spaces for three-dimensional elliptic problems with oscillatory and high contrast coefficients. (2015, submitted). https://arxiv.org/abs/1606.07560

  • A. Klawonn, M. Kühn, O. Rheinbach, Adaptive coarse spaces for FETI-DP in three dimensions. Technical Report 2015-11, Mathematik und Informatik, Bergakademie Freiberg, 2015

    Google Scholar 

  • T.V. Kolev, P.S. Vassilevski, Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math. 27 (5), 604–623 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • A. Logg, G.N. Wells, Dolfin: automated finite element computing. ACM Trans. Math. Softw. 37 (2), 20:1–20:28 (2010)

    Google Scholar 

  • J. Mandel, B. Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Eng. 196 (8), 1389–1399 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • J. Mandel, C.R. Dohrmann, R. Tezaur, An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer. Math. 54 (2), 167–193 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • J. Mandel, B. Sousedík, J. Šístek, Adaptive BDDC in three dimensions. Math. Comput. Simul. 82 (10), 1812–1831 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • C. Pechstein, C.R. Dohrmann, Modern domain decomposition methods, BDDC, deluxe scaling, and an algebraic approach (2013), http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-bddc2013.pdf

    Google Scholar 

  • R.N. Rieben, D.A. White, Verification of high-order mixed finite-element solution of transient magnetic diffusion problems. IEEE Trans. Magn. 42 (1), 25–39 (2006)

    CrossRef  Google Scholar 

  • C. Schwarzbach, R.-U. Börner, K. Spitzer, Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics: a marine CSEM example. Geophys. J. Int. 187 (1), 63–74 (2011)

    CrossRef  Google Scholar 

  • A. Toselli, Dual-primal FETI algorithms for edge finite-element approximations in 3D. IMA J. Numer. Anal. 26 (1), 96–130 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • A. Toselli, X. Vasseur, Dual-primal FETI algorithms for edge element approximations: two-dimensional h and p finite elements on shape-regular meshes. SIAM J. Numer. Anal. 42 (6), 2590–2611 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • S. Zampini, PCBDDC: a class of robust dual-primal methods in PETSc. SIAM J. Sci. Comput. 38 (5), S282–S306 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • S. Zampini, D.E. Keyes, On the robustness and prospects of adaptive BDDC methods for finite element discretizations of elliptic PDEs with high-contrast coefficients, in Proceedings of the Platform for Advanced Scientific Computing Conference, PASC’16 (ACM, New York, 2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zampini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zampini, S. (2017). Adaptive BDDC Deluxe Methods for H(curl). In: , et al. Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computational Science and Engineering, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-52389-7_29

Download citation