Advertisement

Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow

  • Lulu LiuEmail author
  • Wei Zhang
  • David E. Keyes
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 116)

Abstract

A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.

Keywords

Rayleigh Number Newton Iteration Inexact Newton Method High Rayleigh Number GMRES Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge support from KAUST’s Extreme Computing Research Center and the PETSc group of Argonne National Laboratory.

References

  1. X.-C. Cai, D.E. Keyes, Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24 (1), 183–200 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. X.-C. Cai, D.E. Keyes, L. Marcinkowski, Nonlinear additive Schwarz preconditioners and application in computational fluid dynamics. Int. J. Numer. Methods Fluids 40 (12), 1463–1470 (2002a)MathSciNetCrossRefzbMATHGoogle Scholar
  3. X.-C. Cai, D.E. Keyes, D.P. Young, A nonlinear additive Schwarz preconditioned inexact Newton method for shocked duct flows, in Domain Decomposition Methods in Science and Engineering (Lyon, 2000) (CIMNE, Barcelona, 2002b), pp. 345–352zbMATHGoogle Scholar
  4. G. De Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3 (3), 249–264 (1983)CrossRefzbMATHGoogle Scholar
  5. J.E. Dennis, Jr., R.B. Schnabel. Numerical methods for unconstrained optimization and nonlinear equations, Classics in Applied Mathematics, vol. 16 (SIAM, Philadelphia, 1996)CrossRefzbMATHGoogle Scholar
  6. S.C. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods. SIAM J. Optim. 4 (2), 393–422 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. F.-N. Hwang, X.-C. Cai, A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations. J. Comput. Phys. 204 (2), 666–691 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193 (2), 357–397 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. L. Liu, D.E. Keyes, Field-split preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 37 (3), A1388–A1409 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19 (1), 302–318 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. J.O. Skogestad, E. Keilegavlen, J.M. Nordbotten, Domain decomposition strategies for nonlinear flow problems in porous media. J. Comput. Phys. 234, 439–451 (2013)MathSciNetCrossRefGoogle Scholar
  12. C.-H. Zhang, W. Zhang, G. Xi, A pseudospectral multidomain method for conjugate conduction-convection in enclosures. Numer. Heat. Tr. B-FUND 57 (4), 260–282 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computational ScienceUniversità della Svizzera italiana (USI)LuganoSwitzerland
  2. 2.Program in Mechanical EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  3. 3.Program in Applied Mathematics and Computational Science and Extreme Computing Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations