Adaptive Coarse Spaces for FETI-DP in Three Dimensions with Applications to Heterogeneous Diffusion Problems

  • Axel KlawonnEmail author
  • Martin Kühn
  • Oliver Rheinbach
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 116)


A new adaptive coarse space approach including a condition number bound for FETI-DP or BDDC methods for problems with coefficient jumps inside subdomains and across subdomain boundaries in three dimensions is presented. The approach is based on a known adaptive coarse space approach enriched by a small number of additional local edge eigenvalue problems. Numerical results are presented for diffusion problems with heterogeneous coefficients supporting our theoretical findings. The problems considered also include random coefficients.


Eigenvalue Problem Condition Number Primal Vertex Edge Node Coarse Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. C. Dohrmann, C. Pechstein, Modern domain decomposition solvers - BDDC, deluxe scaling, and an algebraic approach, in Slides to a talk at NuMa Seminar, JKU Linz, Dec 10th, 2013, ed. by C. Pechstein.
  2. V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12 (4), 391–414 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. C. Farhat, M. Lesoinne, K. Pierson, A scalable dual-primal domain decomposition method. Numer. Linear Alg. Appl. 7 (7–8), 687–714 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8 (4), 1461–1483 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. H.H. Kim, E.T. Chung, A BDDC algorithm with enriched coarse spaces for two-dimensional elliptic problems with oscillatory and high contrast coefficients. Multiscale Model. Simul. 13 (2), 571–593 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. A. Klawonn, O. Rheinbach, Robust FETI-DP methods for heterogeneous three dimensional elasticity problems. Comput. Methods Appl. Mech. Eng. 196 (8), 1400–1414 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. A. Klawonn, O. Rheinbach, Deflation, projector preconditioning, and balancing in iterative substructuring methods: connections and new results. SIAM J. Sci. Comput. 34 (1) A459–A484, (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. A. Klawonn, P. Radtke, O. Rheinbach, FETI-DP methods with an adaptive coarse space. SIAM J. Numer. Anal. 53, 297–320 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. A. Klawonn, M. Kühn, O. Rheinbach, Adaptive coarse spaces for FETI-DP in three dimensions. SIAM J. Sci. Comput. 38 (5), A2880–A2911 (2016a). doi:10.1137/15M1049610MathSciNetCrossRefzbMATHGoogle Scholar
  10. A. Klawonn, P. Radtke, O. Rheinbach, A comparison of adaptive coarse spaces for iterative substructuring in two dimensions. Electron. Trans. Numer. Anal. 45, 75–106 (2016b)MathSciNetzbMATHGoogle Scholar
  11. J. Mandel, B. Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Eng. 196 (8), 1389–1399 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. J. Mandel, B. Sousedík, J. Šístek, Adaptive BDDC in three dimensions. Math. Comput. Simul. 82(10), 1812–1831 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. N. Spillane, D.J. Rixen, Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Methods Eng. 95 (11), 953–990 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. A. Toselli, O.B. Widlund, Domain Decomposition Methods - Algorithms and Theory, vol. 34. Springer Series in Computational Mathematics (Springer, Berlin, 2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und Informatik, Technische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations