Advertisement

A Direct Elliptic Solver Based on Hierarchically Low-Rank Schur Complements

  • Gustavo Chávez
  • George Turkiyyah
  • David E. Keyes
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 116)

Abstract

A parallel fast direct solver for rank-compressible block tridiagonal linear systems is presented. Algorithmic synergies between Cyclic Reduction and Hierarchical matrix arithmetic operations result in a solver with O(Nlog2N) arithmetic complexity and O(NlogN) memory footprint. We provide a baseline for performance and applicability by comparing with well-known implementations of the \(\mathcal{H}\)-LU factorization and algebraic multigrid within a shared-memory parallel environment that leverages the concurrency features of the method. Numerical experiments reveal that this method is comparable with other fast direct solvers based on Hierarchical Matrices such as \(\mathcal{H}\)-LU and that it can tackle problems where algebraic multigrid fails to converge.

Keywords

Arithmetic Complexity Cyclic Reduction Nest Dissection Hierarchical Matrice Block Tridiagonal Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. S. Ambikasaran, E. Darve, An \(\mathcal{O}(N\log N)\) fast direct solver for partial hierarchically semiseparable matrices. J. Sci. Comput. 57 (3), 477–501 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. P. Amestoy, A. Buttari, G. Joslin, J.-Y. L’Excellent, M. Sid-Lakhdar, C. Weisbecker, M. Forzan, C. Pozza, R. Perrin, V. Pellissier, Shared-memory parallelism and low-rank approximation techniques applied to direct solvers in FEM simulation. IEEE Trans. Mag. 50 (2), 517–520 (2014)CrossRefGoogle Scholar
  3. A. Aminfar, S. Ambikasaran, E. Darve, A fast block low-rank dense solver with applications to finite-element matrices. J. Comput. Phys. 304, 170–188 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Lecture Notes in Computational Science and Engineering, vol. 63 (Springer, Berlin, 2008)Google Scholar
  5. B.L. Buzbee, G.H. Golub, C.W. Nielson, On direct methods for solving Poisson equation. SIAM J. Numer. Anal. 7 (4), 627–656 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  6. S. Chandrasekaran, M. Gu, T. Pals, A fast ULV decomposition solver for hierarchically semiseparable representations. SIAM J. Matrix Anal. Appl. 28 (3), 603–622 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. G. Chavez, G. Turkiyyah, S. Zampini, H. Ltaief, D. Keyes, Accelerated cyclic reduction: a distributed-memory fast direct solver for structured linear systems (2016). Preprint, arXiv:1701.00182Google Scholar
  8. P. Ghysels, X.S. Li, F.-H. Rouet, S. Williams, A. Napov, An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling. arXiv:1502.07405 [cs.MS], pp. 1–26, 2015Google Scholar
  9. L. Grasedyck, R. Kriemann, S. Le Borne, Domain decomposition based \(\mathcal{H}\)-LU preconditioning. Numer. Math. 112 (4), 565–600 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. W. Hackbusch, A sparse matrix arithmetic based on \(\mathcal{H}\)-Matrices. Part I: introduction to \(\mathcal{H}\)-Matrices. Computing 62 (2), 89–108 (1999)Google Scholar
  11. W. Hackbusch, S. Börm, L. Grasedyck, HLib 1.4. http://hlib.org, 1999–2012. Max-Planck-Institut, Leipzig
  12. R.W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis. J. ACM 12 (1), 95–113 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. I. Ibragimov, S. Rjasanow, K. Straube, Hierarchical Cholesky decomposition of sparse matrices arising from curl-curl-equation. J. Numer. Math. 15 (1), 31–57 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. R. Kriemann, Parallel \(\mathcal{H}\)-Matrix arithmetics on shared memory systems. Computing 74 (3), 273–297 (2005). ISSN=0010-485XGoogle Scholar
  15. R.D. Falgout, U.M. Yang, Hypre: a library of high performance preconditioners, in Computational Science - ICCS 2002: International Conference Amsterdam, ed. by P.M. A. Sloot, A.G. Hoekstra, C.J.K. Tan, J.J. Dongarra. 2002 Proceedings, Part III (Springer, Berlin/Heidelberg, 2002), pp. 632–641. ISBN:978-3-540-47789-1Google Scholar
  16. P.G. Schmitz, L. Ying, A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. 231 (4), 1314–1338 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. P.G. Schmitz, L. Ying, A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices. J. Comput. Phys. 258, 227–245 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. P. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson equation on a rectangle. SIAM Rev. 19 (3), 490–501 (1977)MathSciNetzbMATHGoogle Scholar
  19. J. Xia, S. Chandrasekaran, M. Gu, X. Li, Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31 (3), 1382–1411 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. J. Xia, S. Chandrasekaran, M. Gu, X.S. Li, Fast algorithms for hierarchically semiseparable matrices. Numer. Lin. Alg. Appl. 17 (6), 953–976 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. J. Xia, M. Gu, Robust approximate Cholesky factorization of rank-structured symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 31 (5), 2899–2920 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gustavo Chávez
    • 1
  • George Turkiyyah
    • 1
  • David E. Keyes
    • 1
  1. 1.Extreme Computing Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations